<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>Practical Aspects of a Vision System — Image Display, Input/Output, and Library Calls</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenCV</td>
<td>2</td>
</tr>
<tr>
<td>The Basic OpenCV Code</td>
<td>2</td>
</tr>
<tr>
<td>The IPLImage Data Structure</td>
<td>3</td>
</tr>
<tr>
<td>Reading and Writing Images</td>
<td>6</td>
</tr>
<tr>
<td>Image Display</td>
<td>7</td>
</tr>
<tr>
<td>An Example</td>
<td>7</td>
</tr>
<tr>
<td>Image Capture</td>
<td>10</td>
</tr>
<tr>
<td>Interfacing with the AIPCV Library</td>
<td>14</td>
</tr>
<tr>
<td>Website Files</td>
<td>18</td>
</tr>
<tr>
<td>References</td>
<td>18</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>Edge-Detection Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Purpose of Edge Detection</td>
<td>21</td>
</tr>
<tr>
<td>Traditional Approaches and Theory</td>
<td>23</td>
</tr>
<tr>
<td>Models of Edges</td>
<td>24</td>
</tr>
<tr>
<td>Noise</td>
<td>26</td>
</tr>
<tr>
<td>Derivative Operators</td>
<td>30</td>
</tr>
<tr>
<td>Template-Based Edge Detection</td>
<td>36</td>
</tr>
<tr>
<td>Edge Models: The Marr-Hildreth Edge Detector</td>
<td>39</td>
</tr>
<tr>
<td>The Canny Edge Detector</td>
<td>42</td>
</tr>
<tr>
<td>The Shen-Castan (ISEF) Edge Detector</td>
<td>48</td>
</tr>
<tr>
<td>A Comparison of Two Optimal Edge Detectors</td>
<td>51</td>
</tr>
</tbody>
</table>
Color Edges 53
Source Code for the Marr-Hildreth Edge Detector 58
Source Code for the Canny Edge Detector 62
Source Code for the Shen-Castan Edge Detector 70
Website Files 80
References 82

Chapter 3
Digital Morphology 85
Morphology Defined 85
Connectedness 86
Elements of Digital Morphology — Binary Operations 87
 Binary Dilation 88
 Implementing Binary Dilation 92
 Binary Erosion 94
 Implementation of Binary Erosion 100
 Opening and Closing 101
 MAX — A High-Level Programming Language for Morphology 107
 The “Hit-and-Miss” Transform 113
 Identifying Region Boundaries 116
 Conditional Dilation 116
 Counting Regions 119
Grey-Level Morphology 121
 Opening and Closing 123
 Smoothing 126
 Gradient 128
 Segmentation of Textures 129
 Size Distribution of Objects 130
Color Morphology 131
Website Files 132
References 135

Chapter 4
Grey-Level Segmentation 137
Basics of Grey-Level Segmentation 137
 Using Edge Pixels 139
 Iterative Selection 140
 The Method of Grey-Level Histograms 141
 Using Entropy 142
 Fuzzy Sets 146
 Minimum Error Thresholding 148
Sample Results From Single Threshold Selection 149
Chapter 5 **Texture and Color** 177

- Texture and Segmentation 177
- A Simple Analysis of Texture in Grey-Level Images 179
- Grey-Level Co-Occurrence 182
 - Maximum Probability 185
 - Moments 185
 - Contrast 185
 - Homogeneity 185
 - Entropy 186
- Results from the GLCM Descriptors 186
- Speeding Up the Texture Operators 186
- Edges and Texture 188
- Energy and Texture 191
- Surfaces and Texture 193
 - Vector Dispersion 193
 - Surface Curvature 195
- Fractal Dimension 198
- Color Segmentation 201
- Color Textures 205
- Website Files 205
- References 206

Chapter 6 **Thinning** 209

- What Is a Skeleton? 209
- The Medial Axis Transform 210
- Iterative Morphological Methods 212
- The Use of Contours 221
 - Choi/Lam/Siu Algorithm 224
- Treating the Object as a Polygon 226
 - Triangulation Methods 227
Chapter 7 Image Restoration 251

Image Degradations — The Real World 251
The Frequency Domain 253
 The Fourier Transform 254
 The Fast Fourier Transform 256
 The Inverse Fourier Transform 260
 Two-Dimensional Fourier Transforms 260
 Fourier Transforms in OpenCV 262
Creating Artificial Blur 264
The Inverse Filter 270
The Wiener Filter 271
Structured Noise 273
Motion Blur — A Special Case 276
The Homomorphic Filter — Illumination 277
 Frequency Filters in General 278
 Isolating Illumination Effects 280
Website Files 281
References 283

Chapter 8 Classification 285

Objects, Patterns, and Statistics 285
 Features and Regions 288
 Training and Testing 292
 Variation: In-Class and Out-Class 295
Minimum Distance Classifiers 299
 Distance Metrics 300
 Distances Between Features 302
Cross Validation 304
Support Vector Machines 306
Multiple Classifiers — Ensembles 309
 Merging Multiple Methods 309
 Merging Type 1 Responses 310
Evaluation 311
Converting Between Response Types 312
Chapter 9 Symbol Recognition 321
The Problem 321
OCR on Simple Perfect Images 322
OCR on Scanned Images — Segmentation 326
Noise 327
Isolating Individual Glyphs 329
Matching Templates 333
Statistical Recognition 337
OCR on Fax Images — Printed Characters 339
Orientation — Skew Detection 340
The Use of Edges 345
Handprinted Characters 348
Properties of the Character Outline 349
Convex Deficiencies 353
Vector Templates 357
Neural Nets 363
A Simple Neural Net 364
A Backpropagation Net for Digit Recognition 368
The Use of Multiple Classifiers 372
Merging Multiple Methods 372
Results From the Multiple Classifier 375
Printed Music Recognition — A Study 375
Staff Lines 376
Segmentation 378
Music Symbol Recognition 381
Source Code for Neural Net Recognition System 383
Website Files 390
References 392

Chapter 10 Content-Based Search — Finding Images by Example 395
Searching Images 395
Maintaining Collections of Images 396
Features for Query by Example 399
Color Image Features 399
Mean Color 400
Color Quad Tree 400
Chapter 11 High-Performance Computing for Vision and Image Processing 425

Paradigms for Multiple-Processor Computation 426
 Shared Memory 426
 Message Passing 427
Execution Timing 427
 Using clock() 428
 Using QueryPerformanceCounter 430
The Message-Passing Interface System 432
 Installing MPI 432
 Using MPI 433
 Inter-Process Communication 434
Running MPI Programs 436
Real Image Computations 437
Using a Computer Network — Cluster Computing 440
A Shared Memory System — Using the PC Graphics Processor 444
GLSL 444
OpenGL Fundamentals 445
Practical Textures in OpenGL 448
Shader Programming Basics 451
Vertex and Fragment Shaders 452
Required GLSL Initializations 453
Reading and Converting the Image 454
Passing Parameters to Shader Programs 456
Putting It All Together 457
Speedup Using the GPU 459
Developing and Testing Shader Code 459
Finding the Needed Software 460
Website Files 461
References 461

Index 465