Quasilinear Control

Performance Analysis and Design of Feedback Systems with Nonlinear Sensors and Actuators

ShiNung Ching
Massachusetts Institute of Technology

Yongsoon Eun
Xerox Research Center Webster

Cevat Gokcek
Michigan State University

Pierre T. Kabamba
University of Michigan

Semyon M. Meerkov
University of Michigan
Brief Contents

- **Preface**
 - Preface: page xiii

- **Introduction**
 - 1 Introduction: page 1

- **Stochastic Linearization of LPNI Systems**
 - 2 Stochastic Linearization of LPNI Systems: page 20

- **Analysis of Reference Tracking in LPNI Systems**
 - 3 Analysis of Reference Tracking in LPNI Systems: page 66

- **Analysis of Disturbance Rejection in LPNI Systems**
 - 4 Analysis of Disturbance Rejection in LPNI Systems: page 114

- **Design of Reference Tracking Controllers for LPNI Systems**
 - 5 Design of Reference Tracking Controllers for LPNI Systems: page 134

- **Design of Disturbance Rejection Controllers for LPNI Systems**
 - 6 Design of Disturbance Rejection Controllers for LPNI Systems: page 167

- **Performance Recovery in LPNI Systems**
 - 7 Performance Recovery in LPNI Systems: page 204

- **Proofs**
 - 8 Proofs: page 225

- **Epilogue**
 - Epilogue: page 275

- **Abbreviations and Notations**
 - Abbreviations and Notations: page 277

- **Index**
 - Index: page 281
Contents

Preface ... page xiii

1 Introduction ... 1
 1.1 Linear Plant/Nonlinear Instrumentation Systems
 and Quasilinear Control 1
 1.2 QLC Problems .. 3
 1.3 QLC Approach: Stochastic Linearization 4
 1.4 Quasilinear versus Linear Control 5
 1.5 Overview of Main QLC Results 9
 1.6 Summary .. 14
 1.7 Annotated Bibliography 14

2 Stochastic Linearization of LPNI Systems 20
 2.1 Stochastic Linearization of Open Loop Systems 20
 2.1.1 Stochastic Linearization of Isolated Nonlinearities 20
 2.1.2 Stochastic Linearization of Direct Paths of LPNI Systems 29
 2.2 Stochastic Linearization of Closed Loop LPNI Systems 30
 2.2.1 Notations and Assumptions 30
 2.2.2 Reference Tracking with Nonlinear Actuator 31
 2.2.3 Disturbance Rejection with Nonlinear Actuator 36
 2.2.4 Reference Tracking and Disturbance Rejection with
 Nonlinear Sensor 37
 2.2.5 Closed Loop LPNI Systems with Nonlinear Actuators
 and Sensors ... 40
 2.2.6 Multiple Solutions of Quasilinear Gain Equations ... 46
 2.2.7 Stochastic Linearization of State Space Equations 50
 2.3 Accuracy of Stochastic Linearization in Closed Loop LPNI
 Systems .. 53
 2.3.1 Fokker-Planck Equation Approach 53
 2.3.2 Filter Hypothesis Approach 55
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.2</td>
<td>Admissible Domains for Random Reference Tracking by Prototype Second Order System</td>
<td>137</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Higher Order Systems</td>
<td>141</td>
</tr>
<tr>
<td>5.1.4</td>
<td>Application: Hard Disk Servo Design</td>
<td>141</td>
</tr>
<tr>
<td>5.2</td>
<td>Saturated Root Locus</td>
<td>143</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Scenario</td>
<td>143</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Definitions</td>
<td>144</td>
</tr>
<tr>
<td>5.2.3</td>
<td>S-Root Locus When $K_e(K)$ Is Unique</td>
<td>145</td>
</tr>
<tr>
<td>5.2.4</td>
<td>S-Root Locus When $K_e(K)$ Is Nonunique: Motivating Example</td>
<td>149</td>
</tr>
<tr>
<td>5.2.5</td>
<td>S-Root Locus When $K_e(K)$ Is Nonunique: General Analysis</td>
<td>153</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Approach to Controller Design to Avoid Nonunique $K_e(K)$</td>
<td>154</td>
</tr>
<tr>
<td>5.2.7</td>
<td>S-Root Locus and Amplitude Truncation</td>
<td>155</td>
</tr>
<tr>
<td>5.2.8</td>
<td>Calibration of the S-Root Locus</td>
<td>157</td>
</tr>
<tr>
<td>5.2.9</td>
<td>Application: LPNI Hard Disk Servo Design</td>
<td>159</td>
</tr>
<tr>
<td>5.3</td>
<td>Summary</td>
<td>161</td>
</tr>
<tr>
<td>5.4</td>
<td>Problems</td>
<td>162</td>
</tr>
<tr>
<td>5.5</td>
<td>Annotated Bibliography</td>
<td>165</td>
</tr>
<tr>
<td>6</td>
<td>Design of Disturbance Rejection Controllers for LPNI Systems</td>
<td>167</td>
</tr>
<tr>
<td>6.1</td>
<td>Saturated LQR/LQG</td>
<td>167</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Scenario</td>
<td>167</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Problem Formulation</td>
<td>168</td>
</tr>
<tr>
<td>6.1.3</td>
<td>SLQR Theory</td>
<td>169</td>
</tr>
<tr>
<td>6.1.4</td>
<td>SLQG Theory</td>
<td>174</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Application: Ship Roll Damping Problem</td>
<td>178</td>
</tr>
<tr>
<td>6.1.6</td>
<td>Generalizations</td>
<td>181</td>
</tr>
<tr>
<td>6.2</td>
<td>Instrumented LQR/LQG</td>
<td>182</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Scenario</td>
<td>182</td>
</tr>
<tr>
<td>6.2.2</td>
<td>ILQR Theory</td>
<td>184</td>
</tr>
<tr>
<td>6.2.3</td>
<td>ILQG Theory</td>
<td>188</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Generalizations</td>
<td>193</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Application: Ship Roll Damping Problem</td>
<td>195</td>
</tr>
<tr>
<td>6.3</td>
<td>Summary</td>
<td>197</td>
</tr>
<tr>
<td>6.4</td>
<td>Problems</td>
<td>198</td>
</tr>
<tr>
<td>6.5</td>
<td>Annotated Bibliography</td>
<td>202</td>
</tr>
<tr>
<td>7</td>
<td>Performance Recovery in LPNI Systems</td>
<td>204</td>
</tr>
<tr>
<td>7.1</td>
<td>Partial Performance Recovery</td>
<td>204</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Scenario</td>
<td>204</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Problem Formulation</td>
<td>205</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Main Result</td>
<td>206</td>
</tr>
</tbody>
</table>
Contents

7.1.4 Examples .. 207
7.2 Complete Performance Recovery 209
 7.2.1 Scenario ... 209
 7.2.2 Problem Formulation 211
 7.2.3 a-Boosting .. 212
 7.2.4 s-Boosting ... 214
 7.2.5 Simultaneous a- and s-Boosting 214
 7.2.6 Stability Verification in the Problem of Boosting 215
 7.2.7 Accuracy of Stochastic Linearization in the Problem of Boosting ... 215
 7.2.8 Application: MagLev 217
7.3 Summary ... 218
7.4 Problems ... 219
7.5 Annotated Bibliography 224

8 Proofs .. 225
 8.1 Proofs for Chapter 2 ... 225
 8.2 Proofs for Chapter 3 ... 226
 8.3 Proofs for Chapter 4 ... 234
 8.4 Proofs for Chapter 5 ... 236
 8.5 Proofs for Chapter 6 ... 241
 8.6 Proofs for Chapter 7 ... 269
 8.7 Annotated Bibliography 272

Epilogue .. 275
Abbreviations and Notations 277
Index ... 281