## CONTENTS

ACKNOWLEDGEMENT xv  
ACRONYMS xvii  
NOTATION xxv  

1 INTRODUCTION 1  
1.1 Birth of satellite communications 1  
1.2 Development of satellite communications 1  
1.3 Configuration of a satellite communications system 3  
1.3.1 Communications links 4  
1.3.2 The space segment 5  
1.3.3 The ground segment 8  
1.4 Types of orbit 9  
1.5 Radio regulations 12  
1.5.1 The ITU organisation 12  
1.5.2 Space radiocommunications services 13  
1.5.3 Frequency allocation 13  
1.6 Technology trends 14  
1.7 Services 15  
1.8 The way forward 17  
References 18  

2 ORBITS AND RELATED ISSUES 19  
2.1 Keplerian orbits 19  
2.1.1 Kepler's laws 19  
2.1.2 Newton's law 19  
2.1.3 Relative movement of two point bodies 20  
2.1.4 Orbital parameters 23  
2.1.5 The earth's orbit 28  
2.1.6 Earth–satellite geometry 35  
2.1.7 Eclipses of the sun 41  
2.1.8 Sun–satellite conjunction 42  
2.2 Useful orbits for satellite communication 43  
2.2.1 Elliptical orbits with non-zero inclination 43  
2.2.2 Geosynchronous elliptic orbits with zero inclination 54  
2.2.3 Geosynchronous circular orbits with non-zero inclination 56  
2.2.4 Sub-synchronous circular orbits with zero inclination 59  
2.2.5 Geostationary satellite orbits 59
Contents

2.3 Perturbations of orbits 68
   2.3.1 The nature of the perturbations 69
   2.3.2 The effect of perturbations; orbit perturbation 71
   2.3.3 Perturbations of the orbit of geostationary satellites 73
   2.3.4 Orbit corrections: station keeping of geostationary satellites 81

2.4 Conclusion 97

References 97

3 BASEBAND SIGNALS AND QUALITY OF SERVICE 99
   3.1 Baseband signals 99
      3.1.1 Digital telephone signal 100
      3.1.2 Sound signals 103
      3.1.3 Television signals 104
      3.1.4 Data and multimedia signals 107
   3.2 Performance objectives 108
      3.2.1 Telephone 108
      3.2.2 Sound 108
      3.2.3 Television 108
      3.2.4 Data 108
   3.3 Availability objectives 109
   3.4 Delay 111
      3.4.1 Delay in terrestrial network 111
      3.4.2 Propagation delay over satellite links 111
      3.4.3 Baseband-signal processing time 112
      3.4.4 Protocol-induced delay 112
   3.5 Conclusion 112

References 113

4 DIGITAL COMMUNICATIONS TECHNIQUES 115
   4.1 Baseband formatting 115
      4.1.1 Encryption 115
      4.1.2 Scrambling 117
   4.2 Digital modulation 118
      4.2.1 Two-state modulation—BPSK and DE-BPSK 119
      4.2.2 Four-state modulation—QPSK 120
      4.2.3 Variants of QPSK 121
      4.2.4 Higher-order PSK and APSK 124
      4.2.5 Spectrum of unfiltered modulated carriers 125
      4.2.6 Demodulation 125
      4.2.7 Modulation spectral efficiency 130
   4.3 Channel coding 131
      4.3.1 Block encoding and convolutional encoding 132
      4.3.2 Channel decoding 132
      4.3.3 Concatenated encoding 133
      4.3.4 Interleaving 134
   4.4 Channel coding and the power-bandwidth trade-off 135
      4.4.1 Coding with variable bandwidth 135
      4.4.2 Coding with constant bandwidth 137
      4.4.3 Example: Downlink coding with on-board regeneration 139
      4.4.4 Conclusion 139
4.5 Coded modulation 140
  4.5.1 Trellis coded modulation 141
  4.5.2 Block coded modulation 144
  4.5.3 Decoding coded modulation 145
  4.5.4 Multilevel trellis coded modulation 145
  4.5.5 TCM using a multidimensional signal set 146
  4.5.6 Performance of coded modulations 146
4.6 End-to-end error control 146
4.7 Digital video broadcasting via satellite (DVB-S) 148
  4.7.1 Transmission system 148
  4.7.2 Error performance requirements 152
4.8 Second generation DVB-S 152
  4.8.1 New technology in DVB-S2 153
  4.8.2 Transmission system architecture 154
  4.8.3 Error performance 156
4.9 Conclusion 157
  4.9.1 Digital transmission of telephony 157
  4.9.2 Digital broadcasting of television 159
References 160

5 UPLINK, DOWNLINK AND OVERALL LINK PERFORMANCE; INTERSATELLITE LINKS 163
  5.1 Configuration of a link 163
  5.2 Antenna parameters 164
    5.2.1 Gain 164
    5.2.2 Radiation pattern and angular beamwidth 165
    5.2.3 Polarisation 168
  5.3 Radiated power 170
    5.3.1 Effective isotropic radiated power (EIRP) 170
    5.3.2 Power flux density 170
  5.4 Received signal power 171
    5.4.1 Power captured by the receiving antenna and free space loss 171
    5.4.2 Example 1: Uplink received power 172
    5.4.3 Example 2: Downlink received power 173
    5.4.4 Additional losses 174
    5.4.5 Conclusion 176
  5.5 Noise power spectral density at the receiver input 176
    5.5.1 The origins of noise 176
    5.5.2 Noise characterisation 177
    5.5.3 Noise temperature of an antenna 180
    5.5.4 System noise temperature 185
    5.5.5 System noise temperature: Example 186
    5.5.6 Conclusion 186
  5.6 Individual link performance 186
    5.6.1 Carrier power to noise power spectral density ratio at receiver input 187
    5.6.2 Clear sky uplink performance 187
    5.6.3 Clear sky downlink performance 189
  5.7 Influence of the atmosphere 193
    5.7.1 Impairments caused by rain 193
    5.7.2 Other impairments 207
    5.7.3 Link impairments—relative importance 209
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7.4 Link performance under rain conditions</td>
<td>209</td>
</tr>
<tr>
<td>5.7.5 Conclusion</td>
<td>210</td>
</tr>
<tr>
<td>5.8 Mitigation of atmospheric impairments</td>
<td>210</td>
</tr>
<tr>
<td>5.8.1 Depolarisation mitigation</td>
<td>210</td>
</tr>
<tr>
<td>5.8.2 Attenuation mitigation</td>
<td>211</td>
</tr>
<tr>
<td>5.8.3 Site diversity</td>
<td>211</td>
</tr>
<tr>
<td>5.8.4 Adaptivity</td>
<td>212</td>
</tr>
<tr>
<td>5.8.5 Cost-availability trade-off</td>
<td>212</td>
</tr>
<tr>
<td>5.9 Overall link performance with transparent satellite</td>
<td>213</td>
</tr>
<tr>
<td>5.9.1 Characteristics of the satellite channel</td>
<td>214</td>
</tr>
<tr>
<td>5.9.2 Expression for ((C/N_0)_T)</td>
<td>218</td>
</tr>
<tr>
<td>5.9.3 Overall link performance for a transparent satellite without interference or intermodulation</td>
<td>221</td>
</tr>
<tr>
<td>5.10 Overall link performance with regenerative satellite</td>
<td>221</td>
</tr>
<tr>
<td>5.10.1 Linear satellite channel without interference</td>
<td>226</td>
</tr>
<tr>
<td>5.10.2 Non-linear satellite channel without interference</td>
<td>227</td>
</tr>
<tr>
<td>5.10.3 Non-linear satellite channel with interference</td>
<td>228</td>
</tr>
<tr>
<td>5.11 Link performance with multibeam antenna coverage vs monobeam coverage</td>
<td>230</td>
</tr>
<tr>
<td>5.11.1 Advantages of multibeam coverage</td>
<td>231</td>
</tr>
<tr>
<td>5.11.2 Disadvantages of multibeam coverage</td>
<td>234</td>
</tr>
<tr>
<td>5.11.3 Conclusion</td>
<td>237</td>
</tr>
<tr>
<td>5.12 Intersatellite link performance</td>
<td>237</td>
</tr>
<tr>
<td>5.12.1 Frequency bands</td>
<td>238</td>
</tr>
<tr>
<td>5.12.2 Radio-frequency links</td>
<td>238</td>
</tr>
<tr>
<td>5.12.3 Optical links</td>
<td>239</td>
</tr>
<tr>
<td>5.12.4 Conclusion</td>
<td>245</td>
</tr>
<tr>
<td>References</td>
<td>246</td>
</tr>
</tbody>
</table>

6 MULTIPLE ACCESS                                                                 | 247  |
| 6.1 Layered data transmission                                           | 247  |
| 6.2 Traffic parameters                                                  | 248  |
| 6.2.1 Traffic intensity                                                 | 248  |
| 6.2.2 Call blocking probability                                         | 248  |
| 6.2.3 Burstiness                                                        | 248  |
| 6.3 Traffic routing                                                     | 249  |
| 6.3.1 One carrier per station-to-station link                           | 250  |
| 6.3.2 One carrier per transmitting station                             | 251  |
| 6.3.3 Comparison                                                        | 251  |
| 6.4 Access techniques                                                   | 251  |
| 6.4.1 Access to a particular satellite channel (or transponder)         | 251  |
| 6.4.2 Multiple access to the satellite channel                          | 252  |
| 6.4.3 Performance evaluation—efficiency                                | 253  |
| 6.5 Frequency division multiple access (FDMA)                           | 253  |
| 6.5.1 TDM/PSK/FDMA                                                      | 254  |
| 6.5.2 SCPC/FDMA                                                         | 254  |
| 6.5.3 Adjacent channel interference                                     | 254  |
| 6.5.4 Intermodulation                                                   | 254  |
| 6.5.5 FDMA efficiency                                                   | 258  |
| 6.5.6 Conclusion                                                        | 260  |
6.6 Time division multiple access (TDMA)
   6.6.1 Burst generation
   6.6.2 Frame structure
   6.6.3 Burst reception
   6.6.4 Synchronisation
   6.6.5 TDMA efficiency
   6.6.6 Conclusion

6.7 Code division multiple access (CDMA)
   6.7.1 Direct sequence (DS-CDMA)
   6.7.2 Frequency hopping CDMA (FH-CDMA)
   6.7.3 Code generation
   6.7.4 Synchronisation
   6.7.5 CDMA efficiency
   6.7.6 Conclusion

6.8 Fixed and on-demand assignment
   6.8.1 The principle
   6.8.2 Comparison between fixed and on-demand assignment
   6.8.3 Centralised or distributed management of on-demand assignment
   6.8.4 Conclusion

6.9 Random access
   6.9.1 Asynchronous protocols
   6.9.2 Protocols with synchronisation
   6.9.3 Protocols with assignment on demand
   6.10 Conclusion

References
7.7 Broadband satellite networks
  7.7.1 Overview of DVB-RCS and DVB-S/S2 network
  7.7.2 Protocol stack architecture for broadband satellite networks
  7.7.3 Physical layer
  7.7.4 Satellite MAC layer
  7.7.5 Satellite link control layer
  7.7.6 Quality of service
  7.7.7 Network layer
  7.7.8 Regenerative satellite mesh network architecture
7.8 Transmission control protocol
  7.8.1 TCP segment header format
  7.8.2 Connection set up and data transmission
  7.8.3 Congestion control and flow control
  7.8.4 Impact of satellite channel characteristics on TCP
  7.8.5 TCP performance enhancement
7.9 IPv6 over satellite networks
  7.9.1 IPv6 basics
  7.9.2 IPv6 transitions
  7.9.3 IPv6 tunnelling through satellite networks
  7.9.4 6to4 translation via satellite networks
7.10 Conclusion
References

8 EARTH STATIONS
  8.1 Station organisation
  8.2 Radio-frequency characteristics
  8.2.1 Effective isotropic radiated power (EIRP)
  8.2.2 Figure of merit of the station
  8.2.3 Standards defined by international organisations and satellite operators
  8.3 The antenna subsystem
  8.3.1 Radiation characteristics (main lobe)
  8.3.2 Side-lobe radiation
  8.3.3 Antenna noise temperature
  8.3.4 Types of antenna
  8.3.5 Pointing angles of an earth station antenna
  8.3.6 Mountings to permit antenna pointing
  8.3.7 Tracking
  8.4 The radio-frequency subsystem
  8.4.1 Receiving equipment
  8.4.2 Transmission equipment
  8.4.3 Redundancy
  8.5 Communication subsystems
  8.5.1 Frequency translation
  8.5.2 Amplification, filtering and equalisation
  8.5.3 Modems
  8.6 The network interface subsystem
  8.6.1 Multiplexing and demultiplexing
  8.6.2 Digital speech interpolation (DSI)
  8.6.3 Digital circuit multiplication equipment (DCME)
  8.6.4 Echo suppression and cancellation
  8.6.5 Equipment specific to SCPC transmission
## Contents

8.7 Monitoring and control; auxiliary equipment 432
  8.7.1 Monitoring, alarms and control (MAC) equipment 432
  8.7.2 Electrical power 432
8.8 Conclusion 433
References 434

9 THE COMMUNICATION PAYLOAD 435
  9.1 Mission and characteristics of the payload 435
    9.1.1 Functions of the payload 435
    9.1.2 Characterisation of the payload 436
    9.1.3 The relationship between the radio-frequency characteristics 437
  9.2 Transparent repeater 437
    9.2.1 Characterisation of non-linearities 438
    9.2.2 Repeater organisation 447
    9.2.3 Equipment characteristics 453
  9.3 Regenerative repeater 465
    9.3.1 Coherent demodulation 465
    9.3.2 Differential demodulation 466
    9.3.3 Multicarrier demodulation 466
  9.4 Multibeam antenna payload 467
    9.4.1 Fixed interconnection 467
    9.4.2 Reconfigurable (semi-fixed) interconnection 468
    9.4.3 Transparent on-board time domain switching 468
    9.4.4 On-board frequency domain transparent switching 471
    9.4.5 Baseband regenerative switching 472
    9.4.6 Optical switching 475
  9.5 Introduction to flexible payloads 475
  9.6 Solid state equipment technology 477
    9.6.1 The environment 477
    9.6.2 Analogue microwave component technology 477
    9.6.3 Digital component technology 478
  9.7 Antenna coverage 479
    9.7.1 Service zone contour 479
    9.7.2 Geometrical contour 482
    9.7.3 Global coverage 482
    9.7.4 Reduced or spot coverage 484
    9.7.5 Evaluation of antenna pointing error 486
    9.7.6 Conclusion 498
  9.8 Antenna characteristics 498
    9.8.1 Antenna functions 498
    9.8.2 The radio-frequency coverage 500
    9.8.3 Circular beams 501
    9.8.4 Elliptical beams 504
    9.8.5 The influence of depointing 505
    9.8.6 Shaped beams 507
    9.8.7 Multiple beams 510
    9.8.8 Types of antenna 511
    9.8.9 Antenna technologies 515
  9.9 Conclusion 524
References 524
10 THE PLATFORM

10.1 Subsystems
10.2 Attitude control
   10.2.1 Attitude control functions
   10.2.2 Attitude sensors
   10.2.3 Attitude determination
   10.2.4 Actuators
   10.2.5 The principle of gyroscopic stabilisation
   10.2.6 Spin stabilisation
   10.2.7 'Three-axis' stabilisation

10.3 The propulsion subsystem
   10.3.1 Characteristics of thrusters
   10.3.2 Chemical propulsion
   10.3.3 Electric propulsion
   10.3.4 Organisation of the propulsion subsystem
   10.3.5 Electric propulsion for station keeping and orbit transfer

10.4 The electric power supply
   10.4.1 Primary energy sources
   10.4.2 Secondary energy sources
   10.4.3 Conditioning and protection circuits
   10.4.4 Example calculations

10.5 Telemetry, tracking and command (TTC) and on-board data handling (OBDH)
   10.5.1 Frequencies used
   10.5.2 The telecommand links
   10.5.3 Telemetry links
   10.5.4 Telecommand (TC) and telemetry (TM) message format standards
   10.5.5 On-board data handling (OBDH)
   10.5.6 Tracking

10.6 Thermal control and structure
   10.6.1 Thermal control specifications
   10.6.2 Passive control
   10.6.3 Active control
   10.6.4 Structure
   10.6.5 Conclusion

10.7 Developments and trends

References

11 SATELLITE INSTALLATION AND LAUNCH VEHICLES

11.1 Installation in orbit
   11.1.1 Basic principles
   11.1.2 Calculation of the required velocity increments
   11.1.3 Inclination correction and circularisation
   11.1.4 The apogee (or perigee) motor
   11.1.5 Injection into orbit with a conventional launcher
   11.1.6 Injection into orbit from a quasi-circular low altitude orbit
   11.1.7 Operations during installation (station acquisition)
   11.1.8 Injection into orbits other than geostationary
   11.1.9 The launch window

11.2 Launch vehicles
   11.2.1 Brazil
   11.2.2 China
11.2.3 Commonwealth of Independent States (CIS) 636
11.2.4 Europe 641
11.2.5 India 648
11.2.6 Israel 648
11.2.7 Japan 649
11.2.8 South Korea 652
11.2.9 United States of America 652
11.2.10 Reusable launch vehicles 660
11.2.11 Cost of installation in orbit 661

References 661

12 THE SPACE ENVIRONMENT 663

12.1 Vacuum 663
  12.1.1 Characterisation 663
  12.1.2 Effects 663

12.2 The mechanical environment 664
  12.2.1 The gravitational field 664
  12.2.2 The earth’s magnetic field 665
  12.2.3 Solar radiation pressure 666
  12.2.4 Meteorites and material particles 667
  12.2.5 Torques of internal origin 667
  12.2.6 The effect of communication transmissions 668
  12.2.7 Conclusions 668

12.3 Radiation 668
  12.3.1 Solar radiation 669
  12.3.2 Earth radiation 671
  12.3.3 Thermal effects 671
  12.3.4 Effects on materials 672

12.4 Flux of high energy particles 672
  12.4.1 Cosmic particles 672
  12.4.2 Effects on materials 674

12.5 The environment during installation 675
  12.5.1 The environment during launching 676
  12.5.2 Environment in the transfer orbit 677

References 677

13 RELIABILITY OF SATELLITE COMMUNICATIONS SYSTEMS 679

13.1 Introduction of reliability 679
  13.1.1 Failure rate 679
  13.1.2 The probability of survival or reliability 680
  13.1.3 Failure probability or unreliability 680
  13.1.4 Mean time to failure (MTTF) 682
  13.1.5 Mean satellite lifetime 682
  13.1.6 Reliability during the wear-out period 682

13.2 Satellite system availability 683
  13.2.1 No back-up satellite in orbit 683
  13.2.2 Back-up satellite in orbit 684
  13.2.3 Conclusion 684

13.3 Subsystem reliability 685
  13.3.1 Elements in series 685
### Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3.2 Elements in parallel (static redundancy)</td>
<td>685</td>
</tr>
<tr>
<td>13.3.3 Dynamic redundancy (with switching)</td>
<td>687</td>
</tr>
<tr>
<td>13.3.4 Equipment having several failure modes</td>
<td>690</td>
</tr>
<tr>
<td>13.4 Component reliability</td>
<td>691</td>
</tr>
<tr>
<td>13.4.1 Component reliability</td>
<td>691</td>
</tr>
<tr>
<td>13.4.2 Component selection</td>
<td>692</td>
</tr>
<tr>
<td>13.4.3 Manufacture</td>
<td>693</td>
</tr>
<tr>
<td>13.4.4 Quality assurance</td>
<td>693</td>
</tr>
</tbody>
</table>

INDEX

<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDEX</td>
<td>697</td>
</tr>
</tbody>
</table>