Contents

List of Figures xi
List of Tables xiii
Preface xv
Introduction xix
About the Authors xxix

1 Order and Logic 1
 1.1 Ordered Sets and Fixed-Point Theorems 1
 1.2 First-Order Predicate Logic 7
 1.3 Ordered Spaces of Valuations 12

2 The Semantics of Logic Programs 23
 2.1 Logic Programs and Their Models 23
 2.2 Supported Models 28
 2.3 Stable Models 32
 2.4 Fitting Models 37
 2.5 Perfect Models 43
 2.6 Well-Founded Models 56

3 Topology and Logic Programming 65
 3.1 Convergence Spaces and Convergence Classes 66
 3.2 The Scott Topology on Spaces of Valuations 69
 3.3 The Cantor Topology on Spaces of Valuations 76
 3.4 Operators on Spaces of Valuations Revisited 83

4 Fixed-Point Theory for Generalized Metric Spaces 87
 4.1 Distance Functions in General 88
 4.2 Metrics and Their Generalizations 91
 4.3 Generalized Ultrametrics 97
Contents

4.4 Dislocated Metrics .. 102
4.5 Dislocated Generalized Ultrametrics 104
4.6 Quasimetrics ... 106
4.7 A Hierarchy of Fixed-Point Theorems 112
4.8 Relationships Between the Various Spaces 114
4.9 Fixed-Point Theory for Multivalued Mappings 125
4.10 Partial Orders and Multivalued Mappings 127
4.11 Metrics and Multivalued Mappings 129
4.12 Generalized Ultrametrics and Multivalued Mappings 129
4.13 Quasimetrics and Multivalued Mappings 132
4.14 An Alternative to Multivalued Mappings 136

5 Supported Model Semantics 139
5.1 Two-Valued Supported Models 140
5.2 Three-Valued Supported Models 151
5.3 A Hierarchy of Logic Programs 159
5.4 Consequence Operators and Fitting-Style Operators 161
5.5 Measurability Considerations 166

6 Stable and Perfect Model Semantics 169
6.1 The Fixpoint Completion 169
6.2 Stable Model Semantics 171
6.3 Perfect Model Semantics 175

7 Logic Programming and Artificial Neural Networks 185
7.1 Introduction ... 185
7.2 Basics of Artificial Neural Networks 188
7.3 The Core Method as a General Approach to Integration 191
7.4 Propositional Programs 192
7.5 First-Order Programs 196
7.6 Some Extensions – The Propositional Case 212
7.7 Some Extensions – The First-Order Case 218

8 Final Thoughts .. 221
8.1 Foundations of Programming Semantics 221
8.2 Quantitative Domain Theory 222
8.3 Fixed-Point Theorems for Generalized Metric Spaces 223
8.4 The Foundations of Knowledge Representation and Reasoning 223
8.5 Clarifying Logic Programming Semantics 224
8.6 Symbolic and Subsymbolic Representations 225
8.7 Neural-Symbolic Integration 225
8.8 Topology, Programming, and Artificial Intelligence 226
Contents

Appendix: Transfinite Induction and General Topology 229

A.1 The Principle of Transfinite Induction 229
A.2 Basic Concepts from General Topology 234
A.3 Convergence 237
A.4 Separation Properties and Compactness 238
A.5 Subspaces and Products 239
A.6 The Scott Topology 240

Bibliography 243

Index 265