VIBRATION-BASED CONDITION MONITORING
INDUSTRIAL, AEROSPACE AND AUTOMOTIVE APPLICATIONS

Robert Bond Randall
School of Mechanical and Manufacturing Engineering,
University of New South Wales, Australia

WILEY
A John Wiley and Sons, Ltd., Publication
Contents

Foreword

About the Author

Preface

1 Introduction and Background

1.1 Introduction
1.2 Maintenance Strategies
1.3 Condition Monitoring Methods
 1.3.1 Vibration Analysis
 1.3.2 Oil Analysis
 1.3.3 Performance Analysis
 1.3.4 Thermography
1.4 Types and Benefits of Vibration Analysis
 1.4.1 Benefits Compared with Other Methods
 1.4.2 Permanent vs Intermittent Monitoring
1.5 Vibration Transducers
 1.5.1 Absolute vs Relative Vibration Measurement
 1.5.2 Proximity Probes
 1.5.3 Velocity Transducers
 1.5.4 Accelerometers
 1.5.5 Dual Vibration Probes
 1.5.6 Laser Vibrometers
1.6 Torsional Vibration Transducers
 1.6.1 Shaft encoders
 1.6.2 Torsional Laser Vibrometers
1.7 Condition Monitoring – the Basic Problem
References

2 Vibration Signals from Rotating and Reciprocating Machines

2.1 Signal Classification
 2.1.1 Stationary Deterministic Signals
 2.1.2 Stationary Random Signals
 2.1.3 Cyclostationary signals

References
Contents

2.2 Signals Generated by Rotating Machines
- 2.2.1 Low Shaft Orders and Subharmonics 31
- 2.2.2 Vibrations from Gears 40
- 2.2.3 Rolling Element Bearings 47
- 2.2.4 Bladed Machines 52
- 2.2.5 Electrical Machines 52

2.3 Signals Generated by Reciprocating Machines
- 2.3.1 Time–Frequency Diagrams 57
- 2.3.2 Torsional Vibrations 60

References 61

3 Basic Signal Processing Techniques 63

3.1 Probability Distribution and Density 63

3.2 Fourier Analysis
- 3.2.1 Fourier Series 66
- 3.2.2 Fourier Integral Transform 69
- 3.2.3 Sampled Time Signals 69
- 3.2.4 The Discrete Fourier Transform 71
- 3.2.5 The Fast Fourier Transform 72
- 3.2.6 Convolution and the Convolution Theorem 74
- 3.2.7 Zoom FFT 84
- 3.2.8 Practical FFT Analysis 86

3.3 Hilbert Transform and Demodulation
- 3.3.1 Hilbert Transform 95
- 3.3.2 Demodulation 96

3.4 Cepstrum Analysis
- 3.4.1 Terminology and Definitions 105
- 3.4.2 Typical Applications of the Cepstrum 108
- 3.4.3 Practical Considerations with the Cepstrum 110

3.5 Digital Filtering
- 3.5.1 Realization of Digital Filters 115

3.6 Deterministic/Random Signal Separation
- 3.6.1 Order Tracking 117
- 3.6.2 Time Synchronous Averaging 120
- 3.6.3 Linear Prediction 122
- 3.6.4 Adaptive Noise Cancellation 125
- 3.6.5 Self-adaptive Noise Cancellation 125
- 3.6.6 Discrete/Random Separation DRS 128

3.7 Time–Frequency Analysis
- 3.7.1 The Short Time Fourier Transform 130
- 3.7.2 The Wigner–Ville Distribution 130
- 3.7.3 Wavelet Analysis 131

3.8 Cyclostationary Analysis and Spectral Correlation
- 3.8.1 Spectral Correlation 134
Fault Detection

4.1 Introduction

4.2 Rotating Machines

4.2.1 Vibration Criteria
4.2.2 Use of Frequency Spectra
4.2.3 CPB Spectrum Comparison

4.3 Reciprocating Machines

4.3.1 Vibration Criteria for Reciprocating Machines
4.3.2 Time–Frequency Diagrams
4.3.3 Torsional Vibration

References

Diagnostic Techniques

5.1 Harmonic and Sideband Cursors

5.1.1 Examples of Cursor Application

5.2 Minimum Entropy Deconvolution

5.3 Spectral Kurtosis and the Kurtogram

5.3.1 SK—Definition and Calculation
5.3.2 Use of SK as a Filter
5.3.3 The Kurtogram

5.4 Gear Diagnostics

5.4.1 Techniques Based on the TSA
5.4.2 Transmission Error as a Diagnostic Tool
5.4.3 Cepstrum Analysis
5.4.4 Separation of Spalls and Cracks
5.4.5 Diagnostics of Gears with Varying Speed and Load

5.5 Rolling Element Bearing Diagnostics

5.5.1 Signal Models for Bearing Faults
5.5.2 A Semi-automated Bearing Diagnostic Procedure

5.6 Reciprocating Machine and IC Engine Diagnostics

5.6.1 Time–Frequency Methods
5.6.2 Cylinder Pressure Identification

References

Fault Trending and Prognostics

6.1 Introduction

6.2 Trend Analysis

6.2.1 Trending of Simple Parameters
6.2.2 Trending of ‘Impulsiveness’

6.3 Determination of Spall Size in Bearings

6.4 Advanced Prognostics

6.4.1 Physics-Based Models

References
6.4.2 Data-Driven Models 245
6.4.3 Hybrid Models 247
References 250

Appendix: Exercises and Tutorial Questions 253
A.1 Introduction and Background 253
A.1.1 Exam Questions 253
A.2 Vibration Signals from Machines 254
A.2.1 Exam Questions 254
A.3 Basic Signal Processing 256
A.3.1 Tutorial and Exam Questions 256
A.4 Fault Detection 270
A.4.1 Tutorial and Exam Questions 270
A.4.2 Assignment 273
A.5 Diagnostic Techniques 275
A.5.1 Tutorial and Exam Questions 275
A.5.2 Assignments 280
A.6 Prognostics 284
A.6.1 Tutorial and Exam Questions 284

Index 285