CONTENTS

PREFACE xxvi
ABOUT THE AUTHORS xxvii
LIST OF SYMBOLS xxviii

I Introduction 1
 1.1 References 5

PART I RECTIFIERS 7

2 Class D Current-Driven Rectifiers 9
 2.1 Introduction 9
 2.2 Assumptions 10
 2.3 Class D Half-Wave Rectifier 10
 2.3.1 Circuit Operation 10
 2.3.2 Currents and Voltages 12
 2.3.3 Power Factor 13
 2.3.4 Power-Output Capability 14
 2.3.5 Efficiency 15
Class D Voltage-Driven Rectifiers 47

3.1 Introduction 47
3.2 Assumptions 47
3.3 Class D Half-Wave Rectifier 48
 3.3.1 Currents and Voltages 48
 3.3.2 Power Factor 50
 3.3.3 Current and Voltage Stresses 51
 3.3.4 Efficiency 51
 3.3.5 Input Resistance 53
CONTENTS ix

3.3.6 Voltage Transfer Function 53
3.3.7 Ripple Voltage 55
3.4 Class D Transformer Center-Tapped Rectifier 56
 3.4.1 Currents and Voltages 56
 3.4.2 Power Factor 57
 3.4.3 Efficiency 59
 3.4.4 Input Resistance 60
 3.4.5 Voltage Transfer Function 60
 3.4.6 Ripple Voltage 61
3.5 Class D Bridge Rectifier 62
3.6 Synchronous Rectifiers 66
 3.6.1 Efficiency 66
 3.6.2 Input Resistance 67
 3.6.3 Voltage Transfer Function 67
3.7 Summary 69
3.8 References 69
3.9 Review Questions 71
3.10 Problems 71

4 Class E Low dv/dt Rectifiers 72
 4.1 Introduction 72
 4.2 Low dv/dt Rectifier with a Parallel Capacitor 72
 4.2.1 Principle of Operation 72
 4.2.2 Assumptions 74
 4.2.3 Characterization of the Rectifier at Any D 75
 4.2.4 Parameters for $D = 0.5$ 88
 4.2.5 Design Example 89
 4.3 Resonant Low dv/dt Rectifier 90
 4.3.1 Circuit Description 90
 4.3.2 Assumptions 92
 4.3.3 Characteristics 92
 4.3.4 Input Impedance 98
 4.3.5 Diode Stresses 101
 4.3.6 Parameters for $D = 0.5$ 103
 4.3.7 Design Example 105
 4.4 Summary 106
 4.5 References 107
6.5 Analysis
 6.5.1 Assumptions 155
 6.5.2 Series-Resonant Circuit 155
 6.5.3 Input Impedance of Series-Resonant Circuit 157
 6.5.4 Currents, Voltages, and Powers 158
 6.5.5 Current and Voltage Stresses 162
 6.5.6 Operation Under Short-Circuit and Open-Circuit Conditions 166
6.6 Voltage Transfer Function 166
6.7 Efficiency 170
 6.7.1 Conduction Losses 170
 6.7.2 Turn-On Switching Loss 170
 6.7.3 Turn-Off Switching Loss 175
6.8 Design Example 177
6.9 Class D Full-Bridge Series-Resonant Inverter 180
 6.9.1 Currents, Voltages, and Powers 180
 6.9.2 Efficiency 184
 6.9.3 Operation Under Short-Circuit and Open-Circuit Conditions 185
 6.9.4 Voltage Transfer Function 185
6.10 Relationships Among Inverters and Rectifiers 187
6.11 Summary 189
6.12 References 190
6.13 Review Questions 191
6.14 Problems 191

7 Class D Parallel-Resonant Inverter 193

 7.1 Introduction 193
 7.2 Principle of Operation 193
 7.3 Analysis 197
 7.3.1 Assumptions 197
 7.3.2 Resonant Circuit 197
 7.3.3 Voltage Transfer Function 204
 7.3.4 Currents, Voltages, and Powers 209
 7.3.5 Efficiency 217
 7.4 Short-Circuit and Open-Circuit Operation 219
 7.5 Electronic Ballast for Fluorescent Lamps 223
7.6 Design Example 225
7.7 Full-Bridge Parallel-Resonant Inverter 227
 7.7.1 Voltage Transfer Function 227
 7.7.2 Currents, Voltages, and Powers 228
 7.7.3 Efficiency 230
 7.7.4 Short-Circuit and Open-Circuit Operation 231
7.8 Summary 232
7.9 References 233
7.10 Review Questions 233
7.11 Problems 233

8 Class D Series-Parallel-Resonant Inverter 235
 8.1 Introduction 235
 8.2 Principle of Operation 235
 8.3 Analysis 237
 8.3.1 Assumptions 237
 8.3.2 Resonant Circuit 238
 8.3.3 Voltage Transfer Function 242
 8.3.4 Energy Parameters 244
 8.3.5 Short-Circuit and Open-Circuit Operation 253
 8.4 Design Example 254
 8.5 Full-Bridge Series-Parallel-Resonant Inverter 257
 8.5.1 Voltage Transfer Function 257
 8.5.2 Currents and Voltages 258
 8.5.3 Powers and Efficiency 259
 8.6 Summary 259
 8.7 References 260
 8.8 Review Questions 261
 8.9 Problems 261

9 Class D CLL Resonant Inverter 262
 9.1 Introduction 262
 9.2 Principle of Operation 262
 9.3 Analysis 264
 9.3.1 Assumptions 264
 9.3.2 Boundary Between Capacitive and Inductive Load 264
 9.3.3 Voltage Transfer Function 269
12 Class E Zero-Voltage-Switching Resonant Inverter 334

12.1 Introduction 334
12.2 Principle of Operation 335
 12.2.1 Circuit Description 335
 12.2.2 Circuit Operation 336
 12.2.3 Optimum Operation 336
 12.2.4 Suboptimum Operation 339
12.3 Analysis 340
 12.3.1 Assumptions 340
 12.3.2 Current and Voltage Waveforms 340
 12.3.3 Voltage and Current Stresses 343
 12.3.4 Input Impedance of the Resonant Circuit 345
 12.3.5 Output Power 347
 12.3.6 Component Values 347
12.4 Parameters at \(D = 0.5 \) 349
12.5 Efficiency 351
12.6 Matching Resonant Circuits 354
 12.6.1 Basic Circuit 354
 12.6.2 Resonant Circuit \(\pi_1a \) 354
 12.6.3 Resonant Circuit \(\pi_2a \) 357
 12.6.4 Resonant Circuit \(\pi_1b \) 358
 12.6.5 Resonant Circuit \(\pi_4a \) 358
12.7 Design Example 359
12.8 Push-Pull Class E ZVS Inverter 362
12.9 Summary 363
12.10 References 363
12.11 Review Questions 367
12.12 Problems 368

13 Class E Zero-Current-Switching Resonant Inverter 369

13.1 Introduction 369
13.2 Circuit Description 369
CONTENTS

15.2.3 Half-Bridge SRC with Transformer Center-Tapped Rectifier 411
15.2.4 Half-Bridge SRC with Bridge Rectifier 411

15.3 Full-Bridge Series-Resonant Converter 412
15.3.1 Full-Bridge SRC with Half-Wave Rectifier 413
15.3.2 Full-Bridge SRC with Transformer Center-Tapped Rectifier 414
15.3.3 Full-Bridge SRC with Bridge Rectifier 414

15.4 Design of Half-Bridge SRC 415
15.5 Summary 417
15.6 References 418
15.7 Review Questions 420
15.8 Problems 420

16 Class D Parallel-Resonant Converter 422
16.1 Introduction 422
16.2 Half-Bridge Parallel-Resonant Converter 422
 16.2.1 Principle of Operation 422
 16.2.2 Half-Bridge PRC with Half-Wave Rectifier 425
 16.2.3 Half-Bridge PRC with Transformer Center-Tapped Rectifier 427
 16.2.4 Half-Bridge PRC with Bridge Rectifier 427
16.3 Design of the Half-Bridge PRC 427
16.4 Full-Bridge Parallel-Resonant Converter 430
 16.4.1 Full-Bridge PRC with Half-Wave Rectifier 430
 16.4.2 Full-Bridge PRC with Transformer Center-Tapped Rectifier 431
 16.4.3 Full-Bridge PRC with Bridge Rectifier 431
16.5 Summary 432
16.6 References 432
16.7 Review Questions 433
16.8 Problems 434

17 Class D Series-Parallel-Resonant Converter 435
17.1 Introduction 435
17.2 Circuit Description 436
17.3 Half-Bridge Series-Parallel-Resonant Converter 439
CONTENTS XVÜ

17.3.1 Half-Bridge SPRC with Half-Wave Rectifier 439
17.3.2 Half-Wave SPRC with Transformer Center-Tapped Rectifier 440
17.3.3 Half-Bridge SPRC with Bridge Rectifier 440
17.4 Design of Half-Bridge SPRC 440
17.5 Full-Bridge Series-Parallel-Resonant Converter 443
17.5.1 Full-Bridge SPRC with Half-Wave Rectifier 443
17.5.2 Full-Bridge SPRC with Transformer Center-Tapped Rectifier 443
17.5.3 Full-Bridge SPRC with Bridge Rectifier 444
17.6 Summary 445
17.7 References 445
17.8 Review Questions 446
17.9 Problems 447

18 Class D CLL Resonant Converter 448
18.1 Introduction 448
18.2 Circuit Description 448
18.3 Half-Bridge CLL Resonant Converter 451
18.3.1 Half-Bridge CLL Resonant Converter with Half-Wave Rectifier 451
18.3.2 Half-Bridge CLL Resonant Converter with Transformer Center-Tapped Rectifier 452
18.3.3 Half-Bridge CLL Resonant Converter with Bridge Rectifier 452
18.4 Design of Half-Bridge CLL Resonant Converter 453
18.5 Full-Bridge CLL Resonant Converter 455
18.5.1 Full-Bridge CLL Resonant Converter with Half-Wave Rectifier 455
18.5.2 Full-Bridge CLL Resonant Converter with Transformer Center-Tapped Rectifier 456
18.5.3 Full-Bridge CLL Resonant Converter with Bridge Rectifier 456
18.6 LLC Resonant Converter 457
18.7 Summary 457
18.8 References 457
18.9 Review Questions 458
18.10 Problems 458
19 Class D Current-Source-Resonant Converter 459
19.1 Introduction 459
19.2 Circuit Description 459
 19.2.1 CSRC with Half-Wave Rectifier 460
 19.2.2 CSRC with Transformer Center-Tapped Rectifier 461
 19.2.3 CSRC with Class D Bridge Rectifier 461
19.3 Design of CSRC 461
19.4 Summary 464
19.5 References 464
19.6 Review Questions 465
19.7 Problems 465

20 Class D Inverter/Class E Rectifier Resonant Converter 466
20.1 Introduction 466
20.2 Circuit Description 466
20.3 Principle of Operation 468
20.4 Rectifier Parameters for $D = 0.5$ 469
20.5 Design of Class D Inverter/Class E Resonant Converter 471
20.6 Class E ZVS Inverter/Class D Rectifier Resonant DC-DC Converter 473
20.7 Class E ZVS Inverter/Class E ZVS Rectifier Resonant DC-DC Converter 474
20.8 Summary 475
20.9 References 475
20.10 Review Questions 476
20.11 Problems 476

21 Phase-Controlled Resonant Converters 477
21.1 Introduction 477
21.2 Circuit Description of SC PC SRC 477
 21.2.1 SC PC SRC with Half-Wave Rectifier 478
 21.2.2 SC PC SRC with Transformer Center-Tapped Rectifier 479
 21.2.3 SC PC SRC with Bridge Rectifier 479
21.3 Design Example 480
21.4 Summary 482
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.5</td>
<td>References</td>
<td>482</td>
</tr>
<tr>
<td>21.6</td>
<td>Review Questions</td>
<td>484</td>
</tr>
<tr>
<td>21.7</td>
<td>Problems</td>
<td>484</td>
</tr>
<tr>
<td>22</td>
<td>Quasiresonant and Multiresonant DC-DC Power Converters</td>
<td>485</td>
</tr>
<tr>
<td>22.1</td>
<td>Introduction</td>
<td>485</td>
</tr>
<tr>
<td>22.2</td>
<td>Zero-Voltage-Switching Quasiresonant DC-DC Converters</td>
<td>488</td>
</tr>
<tr>
<td>22.3</td>
<td>Buck ZVS Quasiresonant DC-DC Converter</td>
<td>492</td>
</tr>
<tr>
<td>22.3.1</td>
<td>Waveforms</td>
<td>492</td>
</tr>
<tr>
<td>22.3.2</td>
<td>DC Voltage Transfer Function</td>
<td>497</td>
</tr>
<tr>
<td>22.3.3</td>
<td>Voltage and Current Stresses</td>
<td>498</td>
</tr>
<tr>
<td>22.4</td>
<td>Boost ZVS Quasiresonant DC-DC Converter</td>
<td>501</td>
</tr>
<tr>
<td>22.4.1</td>
<td>Waveforms</td>
<td>501</td>
</tr>
<tr>
<td>22.4.2</td>
<td>DC Voltage Transfer Function</td>
<td>505</td>
</tr>
<tr>
<td>22.4.3</td>
<td>Current and Voltage Stresses</td>
<td>506</td>
</tr>
<tr>
<td>22.5</td>
<td>Buck-Boost ZVS Quasiresonant DC-DC Converter</td>
<td>509</td>
</tr>
<tr>
<td>22.5.1</td>
<td>Waveforms</td>
<td>509</td>
</tr>
<tr>
<td>22.5.2</td>
<td>DC Voltage Transfer Function</td>
<td>513</td>
</tr>
<tr>
<td>22.5.3</td>
<td>Current and Voltage Stresses</td>
<td>514</td>
</tr>
<tr>
<td>22.5.4</td>
<td>Generalization of ZVS QR DC-DC Converters</td>
<td>517</td>
</tr>
<tr>
<td>22.6</td>
<td>Zero-Current-Switching Quasiresonant DC-DC Converters</td>
<td>518</td>
</tr>
<tr>
<td>22.7</td>
<td>Buck ZCS Quasiresonant DC-DC Converter</td>
<td>520</td>
</tr>
<tr>
<td>22.7.1</td>
<td>Waveforms</td>
<td>520</td>
</tr>
<tr>
<td>22.7.2</td>
<td>DC Voltage Transfer Function</td>
<td>524</td>
</tr>
<tr>
<td>22.7.3</td>
<td>Current and Voltage Stresses</td>
<td>525</td>
</tr>
<tr>
<td>22.8</td>
<td>Boost ZCS Quasiresonant DC-DC Converter</td>
<td>529</td>
</tr>
<tr>
<td>22.8.1</td>
<td>Waveforms</td>
<td>529</td>
</tr>
<tr>
<td>22.8.2</td>
<td>DC Voltage Transfer Function</td>
<td>533</td>
</tr>
<tr>
<td>22.8.3</td>
<td>Current and Voltage Stresses</td>
<td>535</td>
</tr>
<tr>
<td>22.9</td>
<td>Buck-Boost ZCS Quasiresonant DC-DC Converter</td>
<td>536</td>
</tr>
<tr>
<td>22.9.1</td>
<td>Waveforms</td>
<td>536</td>
</tr>
<tr>
<td>22.9.2</td>
<td>DC Voltage Transfer Function</td>
<td>540</td>
</tr>
<tr>
<td>22.9.3</td>
<td>Current and Voltage Stresses</td>
<td>541</td>
</tr>
<tr>
<td>22.9.4</td>
<td>Generalization of ZCS QR DC-DC Converters</td>
<td>544</td>
</tr>
<tr>
<td>22.10</td>
<td>Zero-Voltage Switching Multiresonant DC-DC Converters</td>
<td>545</td>
</tr>
<tr>
<td>22.10.1</td>
<td>Buck Multiresonant DC-DC Converter</td>
<td>546</td>
</tr>
<tr>
<td>22.11</td>
<td>Zero-Current Switching Multiresonant DC-DC Converters</td>
<td>550</td>
</tr>
</tbody>
</table>