Interactive and life-long learning for identification and categorization tasks

Stephan Kirstein
## Contents

1 Introduction .......................... 1
   1.1 Problem Description .................. 3
   1.2 Definition of Common Terms .......... 5
   1.3 Inspiration from Biology ............ 7
      1.3.1 Memory and Learning in the Human Brain .... 7
      1.3.2 Memory Consolidation ............. 8
      1.3.3 The Cholinergic System .......... 10
   1.4 The Scope of this Dissertation ....... 11
   1.5 Structure of this Thesis ............. 12

2 Life-Long Learning with Standard Neural Network Architectures 15
   2.1 Single Layer Perceptron .............. 16
   2.2 Multi Layer Perceptron ............... 17
   2.3 Cascade Correlation .................. 19
   2.4 Vector Quantization Networks ........ 21
   2.5 Radial Basis Function Networks ..... 24
   2.6 Fuzzy ARTMAP ....................... 25
   2.7 Discussion ........................... 28
## 3 Life-Long Learning for Identification Tasks

3.1 Related Work .............................................. 32
3.1.1 Online Learning and Man-machine Interaction .. 32
3.1.2 Network Architectures for Incremental and Life-
Long Learning ............................................. 34
3.2 Life-Long Learning Model for Object Identification ... 35
3.2.1 Online Vector Quantization to Build a Short-
Term Memory ............................................. 37
3.2.2 Incremental LVQ to Build a Long-Term Memory . 39
3.3 Experimental Results ........................................ 44
3.3.1 Experimental Setup .................................... 45
3.3.2 Feature Extraction ..................................... 46
3.3.3 Online Vector Quantization to Build a Short-
Term Memory ............................................. 48
3.3.4 Incremental LVQ to Build a Long-Term Memory . 50
3.4 Discussion ................................................. 54

## 4 Life-Long Learning for Categorization Tasks

4.1 Comparison between Identification and Categorization
Tasks ......................................................... 60
4.2 Related Work .............................................. 60
4.2.1 Life-Long Learning Architectures ...................... 61
4.2.2 Feature Selection Methods .............................. 62
4.2.3 Visual Category Learning Approaches .................. 63
4.2.4 Online and Interactive Learning ......................... 64
4.3 Life-Long Learning of Categories .......................... 65
4.3.1 Distance Computation and Learning Rule ............... 67
4.3.2 Feature Scoring and Category Initialization .......... 69
4.3.3 Learning Dynamics .................................. 70
4.3.4 Insertion Thresholds .................................. 73
4.4 Experimental Results .................................................. 74
  4.4.1 Experimental Setup ............................................. 75
  4.4.2 Feature Extraction ............................................. 77
  4.4.3 Categorization Performance ................................. 79
  4.4.4 Comparison of Required Network Resources ................ 81
  4.4.5 Qualitative Evaluation of the cLVQ Feature Selection Method .......................... 83
4.5 Discussion ............................................................. 87

5 Interactive and Life-Long Learning in Unconstrained Environments ............. 89
  5.1 An Integrated Vision Architecture for Identification or Categorization Tasks .......... 91
    5.1.1 Object Hypothesis Generation ................................ 91
    5.1.2 Figure-ground Segregation .................................. 92
    5.1.3 Feature Extraction ........................................... 94
    5.1.4 Learning of Object and Category Representations .......... 95
    5.1.5 User Interaction ............................................. 97
  5.2 Object Identification in Unconstrained Environments .................. 98
    5.2.1 Offline Object Identification Experiments .................... 99
    5.2.2 Interactive Learning of Object Representations ............ 104
  5.3 Category Learning in Unconstrained Environments .................. 106
    5.3.1 Offline Categorization Experiments ............................ 107
    5.3.2 Interactive Category Learning .................................. 114
  5.4 Discussion ............................................................. 115

6 Summary and Outlook .................................................... 119
  6.1 Summary ............................................................... 119
  6.2 Outlook ............................................................... 122
A Feature Extraction Methods 125
   A.1 Shape Feature Extraction .......................... 125
      A.1.1 Feed-Forward Shape Feature Extracting Hierarchy 126
      A.1.2 Parts-based Shape Feature Extraction ......... 128

B Learned Feature Representation for Categorization Tasks 131
   B.1 Selected Features of all Color and Shape Categories . . . 131