CONTENTS

CHAPTER 1
INTRODUCTION TO THE MICROPROCESSOR AND COMPUTER
Introduction/Chapter Objectives 1
1–1 A Historical Background 2
 The Mechanical Age 2; The Electrical Age 2; Programming Advancements 4;
 The Microprocessor Age 5; The Modern Microprocessor 7
1–2 The Microprocessor-Based Personal Computer System 17
 The Memory and I/O System 17; The Microprocessor 25
1–3 Number Systems 29
 Digits 29; Positional Notation 30; Conversion to Decimal 31; Conversion from Decimal 32;
 Binary-Coded Hexadecimal 33
1–4 Computer Data Formats 35
 ASCII and Unicode Data 35; BCD (Binary-Coded Decimal) Data 37; Byte-Sized Data 38;
 Word-Sized Data 40; Doubleword-Sized Data 41; Real Numbers 43
1–5 Summary 45
1–6 Questions and Problems 46

CHAPTER 2
THE MICROPROCESSOR AND ITS ARCHITECTURE
Introduction/Chapter Objectives 51
2–1 Internal Microprocessor Architecture 51
 The Programming Model 52; Multipurpose Registers 54
2–2 Real Mode Memory Addressing 58
 Segments and Offsets 58; Default Segment and Offset Registers 60;
 Segment and Offset Addressing Scheme Allows Relocation 60
2–3 Introduction to Protected Mode Memory Addressing 63
 Selectors and Descriptors 63; Program-Invisible Registers 67
2–4 Memory Paging 68
 Paging Registers 69; The Page Directory and Page Table 70
2–5 Flat Mode Memory 72
2–6 Summary 73
2–7 Questions and Problems 74

CHAPTER 3
ADDRESSING MODES
Introduction/Chapter Objectives 77
3–1 Data-Addressing Modes 78
 Register Addressing 81; Immediate Addressing 83; Direct Data Addressing 86;
 Register Indirect Addressing 88; Base-Plus-Index Addressing 91;
Register Relative Addressing 93; Base Relative-Plus-Index Addressing 96;
Scaled-Index Addressing 98; RIP Relative Addressing 99; Data Structures 99

3-2 Program Memory-Addressing Modes 100
Direct Program Memory Addressing 100; Relative Program Memory Addressing 101;
Indirect Program Memory Addressing 101

3-3 Stack Memory-Addressing Modes 102

3-4 Summary 105

3-5 Questions and Problems 107

CHAPTER 4
DATA MOVEMENT INSTRUCTIONS
Introduction/Chapter Objectives 111

4-1 MOV Revisited 112
Machine Language 112; The 64-Bit Mode for the Pentium 4 and Core 2 120

4-2 PUSH/POP 122
PUSH 122; POP 124; Initializing the Stack 124

4-3 Load-Effective Address 127
LEA 127; LDS, LES, LFS, LGS, and LSS 128

4-4 String Data Transfers 130
The Direction Flag 130; DI and SI 130; LODS 130; STOS 131; MOVXS 133;
INS 135; OUTS 136

4-5 Miscellaneous Data Transfer Instructions 137
XCHG 137; LANF and SAHF 137; XLAT 138; IN and OUT 138;
MOVXS and MOVZX 140; BSWAP 140; CMOV 141

4-6 Segment Override Prefix 142

4-7 Assembler Detail 142
Directives 143; Memory Organization 147; A Sample Program 150

4-8 Summary 151

4-9 Questions and Problems 154

CHAPTER 5
ARITHMETIC AND LOGIC INSTRUCTIONS
Introduction/Chapter Objectives 156

5-1 Addition, Subtraction, and Comparison 156
Addition 157; Subtraction 162; Comparison 165

5-2 Multiplication and Division 166
Multiplication 166; Division 169

5-3 BCD and ASCII Arithmetic 172
BCD Arithmetic 172; ASCII Arithmetic 173

5-4 Basic Logic Instructions 175
AND 175; OR 176; Test and Bit Test Instructions 180; NOT and NEG 181

5-5 Shift and Rotate 182
Shift 182; Rotate 184; Bit Scan Instructions 185

5-6 String Comparisons 186
SCAS 186; CMPS 187

5-7 Summary 187

5-8 Questions and Problems 189

CHAPTER 6
PROGRAM CONTROL INSTRUCTIONS
Introduction/Chapter Objectives 192

6-1 The Jump Group 192
Unconditional Jump (JMP) 193; Conditional Jumps and Conditional Sets 198; LOOP 201

6-2 Controlling the Flow of the Program 202
WHILE Loops 205; REPEAT-UNTIL Loops 206

6-3 Procedures 208
CALL 209; RET 211
CONTENTS

6-4 Introduction to Interrupts 213
 Interrupt Vectors 213; Interrupt Instructions 214; Interrupt Control 215;
 Interrupts in the Personal Computer 216; 64-Bit Mode Interrupts 216
6-5 Machine Control and Miscellaneous Instructions 217
 Controlling the Carry Flag Bit 217; WAIT 217; HLT 217; NOP 217;
 LOCK Prefix 218; ESC 218; BOUND 218; ENTER and LEAVE 218
6-6 Summary 219
6-7 Questions and Problems 221

CHAPTER 7

USING ASSEMBLY LANGUAGE WITH C/C++ 223
Introduction/Chapter Objectives 223
7-1 Using Assembly Language with C++ for 16-Bit DOS Applications 224
 Basic Rules and Simple Programs 224; What Cannot Be Used from MASM Inside
 an _asm Block 226; Using Character Strings 226; Using Data Structures 227;
 An Example of a Mixed-Language Program 229
7-2 Using Assembly Language with Visual C++ for 32-Bit Applications 231
 An Example that Uses Console I/O to Access the Keyboard and Display 231;
 Directly Addressing I/O Ports 233; Developing a Visual C++ Application for Windows 234
7-3 Mixed Assembly and C++ Objects 242
 Linking Assembly Language with Visual C++ 242; Adding New Assembly Language
 Instructions to C/C++ Programs 247
7-4 Summary 247
7-5 Questions and Problems 248

CHAPTER 8

PROGRAMMING THE MICROPROCESSOR 250
Introduction/Chapter Objectives 250
8-1 Modular Programming 251
 The Assembler and Linker 251; PUBLIC and EXTRN 253; Libraries 254; Macros 257
8-2 Using the Keyboard and Video Display 259
 Reading the Keyboard 259; Using the Video Display 265; Using a Timer in a Program 267;
 The Mouse 269
8-3 Data Conversions 271
 Converting from Binary to ASCII 272; Converting from ASCII to Binary 274;
 Displaying and Reading Hexadecimal Data 274; Using Lookup Tables for Data
 Conversions 276; An Example Program Using a Lookup Table 278
8-4 Disk Files 280
 Disk Organization 280; File Names 281; Sequential Access Files 282;
 Random Access Files 291
8-5 Example Programs 294
 Time/Date Display Program 294; Numeric Sort Program 295; Data Encryption 297
8-6 Summary 299
8-7 Questions and Problems 300

CHAPTER 9

8086/8088 HARDWARE SPECIFICATIONS 302
Introduction/Chapter Objectives 302
9-1 Pin-Outs and the Pin Functions 302
 The Pin-Out 303; Power Supply Requirements 303; DC Characteristics 303;
 Pin Connections 304
9-2 Clock Generator (8284A) 307
 The 8284A Clock Generator 307; Operation of the 8284A 309
9-3 Bus Buffering and Latching 310
 Demultiplexing the Buses 310; The Buffered System 312
9-4 Bus Timing 315
 Basic Bus Operation 315; Timing in General 315; Read Timing 316; Write Timing 319
CONTENTS

9-5 Ready and the Wait State 320
 The READY Input 320; RDY and the 8284A 320
9-6 Minimum Mode versus Maximum Mode 323
 Minimum Mode Operation 323; Maximum Mode Operation 323;
 The 8288 Bus Controller 324; Pin Functions 325
9-7 Summary 325
9-8 Questions and Problems 326

CHAPTER 10

MEMORY INTERFACE

Introduction/Chapter Objectives 328
10-1 Memory Devices 328
 Memory Pin Connections 329; ROM Memory 330; Static RAM (SRAM) Devices 332;
 Dynamic RAM (DRAM) Memory 333
10-2 Address Decoding 340
 Why Decode Memory? 340; Simple NAND Gate Decoder 341; The 3-to-8 Line Decoder
 (74LS138) 342; The Dual 2-to-4 Line Decoder (74LS139) 344; PLD Programmable
 Decoders 344
10-3 8088 and 80188 (8-Bit) Memory Interface 349
 Basic 8088/80188 Memory Interface 349; Interfacing Flash Memory 351;
 Error Correction 353
10-4 8086, 80186, 80286, and 80386SX (16-Bit) Memory Interface 356
 16-Bit Bus Control 356
10-5 80386DX and 80486 (32-Bit) Memory Interface 363
 Memory Banks 363; 32-Bit Memory Interface 364
10-6 Pentium through Core2 (64-Bit) Memory Interface 366
 64-Bit Memory Interface 366
10-7 Dynamic RAM 370
 DRAM Revisited 370; EDO Memory 371; SDRAM 371; DDR 373; DRAM Controllers 373
10-8 Summary 373
10-9 Questions and Problems 375

CHAPTER 11

BASIC I/O INTERFACE

Introduction/Chapter Objectives 377
11-1 Introduction to I/O Interface 377
 The I/O Instructions 378; Isolated and Memory-Mapped I/O 379; Personal Computer I/O
 Map 380; Basic Input and Output Interfaces 380; Handshaking 382; Notes about
 Interfacing Circuitry 383
11-2 I/O Port Address Decoding 387
 Decoding 8-Bit I/O Port Addresses 387; Decoding 16-Bit I/O Port Addresses 388;
 8- and 16-Bit-Wide I/O Ports 389; 32-Bit-Wide I/O Ports 392
11-3 The Programmable Peripheral Interface 395
 Basic Description of the 82C55 395; Programming the 82C55 397; Mode 0 Operation 398;
 An LCD Display, Interfaced to the 82C55 403; Mode 1 Strobed Input 414; Signal
 Definitions for Mode 1 Strobed Input 414; Mode 1 Strobed Output 416; Signal Definitions
 for Mode 1 Strobed Output 416; Mode 2 Bidirectional Operation 418; Signal Definitions for
 Bidirectional Mode 2 418; 82C55 Mode Summary 420; The Serial EEPROM Interface 421
11-4 8254 Programmable Interval Timer 423
 8254 Functional Description 423; Pin Definitions 424; Programming the 8254 424;
 DC Motor Speed and Direction Control 429
11-5 16550 Programmable Communications Interface 433
 Asynchronous Serial Data 433; 16550 Functional Description 433; 16550 Pin Functions 434;
 Programming the 16550 435
11-6 Analog-to-Digital (ADC) and Digital-to-Analog (DAC) Converters 440
 The DAC0830 Digital-to-Analog Converter 440; The ADC080X Analog-to-Digital
 Converter 442; Using the ADC0804 and the DAC0830 445
CHAPTER 12
INTERRUPTS
Introduction/Chapter Objectives 451

12-1 Basic Interrupt Processing 451
 The Purpose of Interrupts 451; Interrupts 452; Interrupt Instructions: BOUND, INTO,
 INT, INT 3, and IRET 455; The Operation of a Real Mode Interrupt 455; Operation of a
 Protected Mode Interrupt 456; Interrupt Flag Bits 457; Storing an Interrupt Vector in the
 Vector Table 458

12-2 Hardware Interrupts 459
 INTR and INTA 461; The 82C55 Keyboard Interrupt 462

12-3 Expanding the Interrupt Structure 465
 Using the 74ALS244 to Expand Interrupts 465; Daisy-Chained Interrupt 466

12-4 8259A Programmable Interrupt Controller 468
 General Description of the 8259A 468; Connecting a Single 8259A 469; Cascading
 Multiple 8259As 469; Programming the 8259A 469; 8259A Programming Example 475

12-5 Interrupt Examples 481
 Real-Time Clock 482; Interrupt-Processed Keyboard 484

12-6 Summary 487
12-7 Questions and Problems 488

CHAPTER 13
DIRECT MEMORY ACCESS AND DMA-CONTROLLED I/O
Introduction/Chapter Objectives 490

13-1 Basic DMA Operation 490
 Basic DMA Definitions 491

13-2 The 8237 DMA Controller 492
 Pin Definitions 492; Internal Registers 494; Software Commands 497;
 Programming the Address and Count Registers 498; The 8237 Connected
 to the 80X86 Microprocessor 498; Memory-to-Memory Transfer with
 the 8237 499; DMA-Processed Printer Interface 504

13-3 Shared-Bus Operation 506
 Types of Buses Defined 507; The Bus Arbiter 509; Pin Definitions 509

13-4 Disk Memory Systems 513
 Floppy Disk Memory 513; Pen Drives 517; Hard Disk Memory 518;
 Optical Disk Memory 521

13-5 Video Displays 522
 Video Signals 522; The TTL RGB Monitor 523; The Analog RGB Monitor 524

13-6 Summary 529
13-7 Questions and Problems 529

CHAPTER 14
THE ARITHMETIC COPROCESSOR, MMX, AND SIMD TECHNOLOGIES
Introduction/Chapter Objectives 531

14-1 Data Formats for the Arithmetic Coprocessor 532
 Signed Integers 532; Binary-Coded Decimal (BCD) 533; Floating-Point 533

14-2 The 80X87 Architecture 536
 Internal Structure of the 80X87 536

14-3 Instruction Set 541
 Data Transfer Instructions 541; Arithmetic Instructions 543; Comparison Instructions 544;
 Transcendental Operations 545; Constant Operations 546; Coprocessor Control
 Instructions 546; Coprocessor Instructions 548

14-4 Programming with the Arithmetic Coprocessor 565
 Calculating the Area of a Circle 565; Finding the Resonant Frequency 566; Finding the
 Roots Using the Quadratic Equation 566; Using a Memory Array to Store Results 567;
 Converting a Single-Precision Floating-Point Number to a String 568
CHAPTER 15 BUS INTERFACE
Introduction/Chapter Objectives 592
15–1 The ISA Bus 592
 Evolution of the ISA Bus 593; The 8-Bit ISA Bus Output Interface 593; The 8-Bit ISA Bus Input Interface 598; The 16-Bit ISA Bus 601
15–2 The Peripheral Component Interconnect (PCI) Bus 602
 The PCI Bus Pin-Out 603; The PCI Address/Data Connections 603; Configuration Space 605; BIOS for PCI 607; PCI Interface 610; PCI Express Bus 610
15–3 The Parallel Printer Interface (LPT) 612
 Port Details 612; Using the Parallel Port Without ECP Support 614
15–4 The Serial COM Ports 614
 Communication Control 615
15–5 The Universal Serial Bus (USB) 617
 The Connector 617; USB Data 617; USB Commands 618; The USB Bus Node 620; Software for the USBN9604/3 621
15–6 Accelerated Graphics Port (AGP) 623
15–7 Summary 624
15–8 Questions and Problems 625

CHAPTER 16 THE 80186, 80188, AND 80286 MICROPROCESSORS
Introduction/Chapter Objectives 627
16–1 80186/80188 Architecture 627
 Versions of the 80186/80188 628; 80186 Basic Block Diagram 628; 80186/80188 Basic Features 629; Pin-Out 631; DC Operating Characteristics 634; 80186/80188 Timing 634
16–2 Programming the 80186/80188 Enhancements 637
 Peripheral Control Block 637; Interrupts in the 80186/80188 638; Interrupt Controller 638; Timers 643; DMA Controller 649; Chip Selection Unit 651
16–3 80C188EB Example Interface 655
16–4 Real-Time Operating Systems (RTOS) 662
 What Is a Real-Time Operating System (RTOS)? 662; An Example System 663; A Threaded System 666
16–5 Introduction to the 80286 670
 Hardware Features 670; Additional Instructions 672; The Virtual Memory Machine 674
16–6 Summary 674
16–7 Questions and Problems 675

CHAPTER 17 THE 80386 AND 80486 MICROPROCESSORS
Introduction/Chapter Objectives 677
17–1 Introduction to the 80386 Microprocessor 678
 The Memory System 681; The Input/Output System 687; Memory and I/O Control Signals 688; Timing 689; Wait States 691
17–2 Special 80386 Registers 692
 Control Registers 692; Debug and Test Registers 693
17–3 80386 Memory Management 695
 Descriptors and Selectors 695; Descriptor Tables 698; The Task State Segment (TSS) 700
17–4 Moving to Protected Mode 702
CONTENTS

17-5 Virtual 8086 Mode 712
17-6 The Memory Paging Mechanism 713
 The Page Directory 714 The Page Table 715
17-7 Introduction to the 80486 Microprocessor 718
 Pin-Out of the 80486DX and 80486SX Microprocessors 718; Pin Definitions 718;
 Basic 80486 Architecture 722; 80486 Memory System 723
17-8 Summary 726
17-9 Questions and Problems 727

CHAPTER 18 THE PENTIUM AND PENTIUM PRO MICROPROCESSORS 729

Introduction/Chapter Objectives 729
18–1 Introduction to the Pentium Microprocessor 730
 The Memory System 734; Input/Output System 735; System Timing 735;
 Branch Prediction Logic 738; Cache Structure 738; Superscalar Architecture 738
18–2 Special Pentium Registers 738
 Control Registers 738; EFLAG Register 739; Built-In Self-Test (BIST) 740
18–3 Pentium Memory Management 740
 Paging Unit 740; Memory-Management Mode 740
18–4 New Pentium Instructions 742
18–5 Introduction to the Pentium Pro Microprocessor 747
 Internal Structure of the Pentium Pro 748; Pin Connections 750; The Memory System 754;
 Input/Output System 755; System Timing 755
18–6 Special Pentium Pro Features 756
 Control Register 4 756
18–7 Summary 757
18–8 Questions and Problems 758

CHAPTER 19 THE PENTIUM II, PENTIUM III, PENTIUM 4, AND CORE2 MICROPROCESSORS 759

Introduction/Chapter Objectives 759
19–1 Introduction to the Pentium II Microprocessor 760
 The Memory System 765; Input/Output System 767; System Timing 768
19–2 Pentium II Software Changes 768
 CPUID Instruction 768; SYSENTER and SYSEXIT Instructions 769;
 FXSAVE and FXRSTOR Instructions 770
19–3 The Pentium III 770
 Chip Sets 770; Bus 771; Pin-Out 771
19–4 The Pentium 4 and Core2 771
 Memory Interface 772; Register Set 773; Hyper-Threading Technology 775;
 Multiple Core Technology 776; CPUID 776; Model-Specific Registers 779;
 Performance-Monitoring Registers 780; 64-Bit Extension Technology 780
19–5 Summary 782
19–6 Questions and Problems 783

APPENDIX A: THE ASSEMBLER, VISUAL C++, AND DOS 785

The Assembler 785
Assembler Memory Models 786
Selected DOS Function Calls 787
Using Visual C++ 790
 Create a Dialog Application 791

APPENDIX B: INSTRUCTION SET SUMMARY 794

Instruction Set Summary 798
SIMD Instruction Set Summary 881