Contents

Preface
page xi

Acknowledgments
xiii

1 Introduction
1.1 Historical and modern role of modeling and simulation
1.2 Credibility of scientific computing
1.3 Outline and use of the book
1.4 References
17

Part I Fundamental concepts
19

2 Fundamental concepts and terminology
2.1 Development of concepts and terminology
2.2 Primary terms and concepts
2.3 Types and sources of uncertainties
2.4 Error in a quantity
2.5 Integration of verification, validation, and prediction
2.6 References
75

3 Modeling and computational simulation
3.1 Fundamentals of system specifications
3.2 Fundamentals of models and simulations
3.3 Risk and failure
3.4 Phases of computational simulation
3.5 Example problem: missile flight dynamics
3.6 References
137

Part II Code verification
145

4 Software engineering
4.1 Software development
4.2 Version control
4.3 Software verification and validation
4.4 Software quality and reliability
4.5 Case study in reliability: the T experiments
161
4.6 Software engineering for large software projects 162
4.7 References 167

5 Code verification
5.1 Code verification criteria 171
5.2 Definitions 175
5.3 Order of accuracy 180
5.4 Systematic mesh refinement 185
5.5 Order verification procedures 192
5.6 Responsibility for code verification 204
5.7 References 205

6 Exact solutions
6.1 Introduction to differential equations 209
6.2 Traditional exact solutions 210
6.3 Method of manufactured solutions (MMS) 219
6.4 Physically realistic manufactured solutions 234
6.5 Approximate solution methods 239
6.6 References 244

Part III Solution verification 249

7 Solution verification
7.1 Elements of solution verification 250
7.2 Round-off error 252
7.3 Statistical sampling error 258
7.4 Iterative error 260
7.5 Numerical error versus numerical uncertainty 283
7.6 References 284

8 Discretization error
8.1 Elements of the discretization process 288
8.2 Approaches for estimating discretization error 297
8.3 Richardson extrapolation 309
8.4 Reliability of discretization error estimators 317
8.5 Discretization error and uncertainty 322
8.6 Roache’s grid convergence index (GCI) 323
8.7 Mesh refinement issues 329
8.8 Open research issues 334
8.9 References 338

9 Solution adaptation
9.1 Factors affecting the discretization error 343
9.2 Adaptation criteria 349
9.3 Adaptation approaches 356
9.4 Comparison of methods for driving mesh adaptation 360
9.5 References 366
Contents

Part IV Model validation and prediction 369
10 Model validation fundamentals 371
 10.1 Philosophy of validation experiments 372
 10.2 Validation experiment hierarchy 388
 10.3 Example problem: hypersonic cruise missile 396
 10.4 Conceptual, technical, and practical difficulties of validation 401
 10.5 References 405
11 Design and execution of validation experiments 409
 11.1 Guidelines for validation experiments 409
 11.2 Validation experiment example: Joint Computational/Experimental Aerodynamics Program (JCEAP) 422
 11.3 Example of estimation of experimental measurement uncertainties in JCEAP 437
 11.4 Example of further computational–experimental synergism in JCEAP 455
 11.5 References 465
12 Model accuracy assessment 469
 12.1 Elements of model accuracy assessment 470
 12.2 Approaches to parameter estimation and validation metrics 479
 12.3 Recommended features for validation metrics 486
 12.4 Introduction to the approach for comparing means 491
 12.5 Comparison of means using interpolation of experimental data 500
 12.6 Comparison of means requiring linear regression of the experimental data 508
 12.7 Comparison of means requiring nonlinear regression of the experimental data 514
 12.8 Validation metric for comparing p-boxes 524
 12.9 References 548
13 Predictive capability 555
 13.1 Step 1: identify all relevant sources of uncertainty 557
 13.2 Step 2: characterize each source of uncertainty 565
 13.3 Step 3: estimate numerical solution error 584
 13.4 Step 4: estimate output uncertainty 599
 13.5 Step 5: conduct model updating 622
 13.6 Step 6: conduct sensitivity analysis 633
 13.7 Example problem: thermal heating of a safety component 638
 13.8 Bayesian approach as opposed to PBA 664
 13.9 References 665
Contents

Part V Planning, management, and implementation issues 671
14 Planning and prioritization in modeling and simulation 673
 14.1 Methodology for planning and prioritization 673
 14.2 Phenomena identification and ranking table (PIRT) 678
 14.3 Gap analysis process 684
 14.4 Planning and prioritization with commercial codes 690
 14.5 Example problem: aircraft fire spread during crash landing 691
 14.6 References 694
15 Maturity assessment of modeling and simulation 696
 15.1 Survey of maturity assessment procedures 696
 15.2 Predictive capability maturity model 702
 15.3 Additional uses of the PCMM 721
 15.4 References 725
16 Development and responsibilities for verification, validation and uncertainty quantification 728
 16.1 Needed technical developments 728
 16.2 Staff responsibilities 729
 16.3 Management actions and responsibilities 738
 16.4 Development of databases 747
 16.5 Development of standards 753
 16.6 References 755
Appendix: Programming practices 757
Index 762

The color plates will be found between pages 370 and 371.