Laser Physics

SIMON HOOKER
and
COLIN WEBB

Department of Physics, University of Oxford
3.5 Other broadening effects
 3.5.1 Self-absorption

Further reading
Exercises

4 Light amplification by the stimulated emission of radiation
 4.1 The optical gain cross-section
 4.1.1 Condition for optical gain
 4.1.2 Frequency dependence of the gain cross-section
 4.1.3 The gain coefficient
 4.1.4 Gain narrowing
 4.2 Narrowband radiation
 4.2.1 Amplification of narrowband radiation
 4.2.2 Form of rate equations
 4.3 Gain cross-section for inhomogeneous broadening
 4.4 Orders of magnitude
 4.5 Absorption
 4.5.1 The absorption cross-section
 4.5.2 Self-absorption
 4.5.3 Radiation trapping

Further reading
Exercises

5 Gain saturation
 5.1 Saturation in a steady-state amplifier
 5.1.1 Homogeneous broadening
 5.1.2 Inhomogeneous broadening
 5.2 Saturation in a homogeneously broadened pulsed amplifier
 5.3 Design of laser amplifiers

Exercises

6 The laser oscillator
 6.1 Introduction
 6.2 Amplified spontaneous emission (ASE) lasers
 6.3 Optical cavities
 6.3.1 General considerations
 6.3.2 Low-loss (or ‘stable’) optical cavities
 6.3.3 High-loss (or ‘unstable’) optical cavities
 6.4 Beam quality
 6.4.1 The M^2 beam-propagation factor
 6.5 The approach to laser oscillation
 6.5.1 The ‘cold’ cavity
 6.5.2 The laser threshold condition
 6.6 Laser oscillation above threshold
 6.6.1 Condition for steady-state laser oscillation
 6.6.2 Homogeneously broadened systems
6.6.3 Inhomogeneously broadened systems†

6.7 Output power
6.7.1 Low-gain lasers
6.7.2 High-gain lasers: the Rigrod analysis†
6.7.3 Output power in other cases

Further reading
Exercises

7 Solid-state lasers
7.1 General considerations
7.1.1 Energy levels of ions doped in solid hosts†
7.1.2 Radiative transitions†
7.1.3 Non-radiative transitions†
7.1.4 Line broadening†
7.1.5 Three- and four-level systems
7.1.6 Host materials
7.1.7 Techniques for optical pumping

7.2 Nd\(^{3+}\):YAG and other trivalent rare-earth systems
7.2.1 Energy-level structure
7.2.2 Transition linewidth
7.2.3 Nd:YAG laser
7.2.4 Other crystalline hosts
7.2.5 Nd:glass laser
7.2.6 Erbium lasers
7.2.7 Praseodymium ions

7.3 Ruby and other trivalent iron-group systems
7.3.1 Energy-level structure†
7.3.2 The ruby laser
7.3.3 Alexandrite laser
7.3.4 Cr:LiSAF and Cr:LiCAF
7.3.5 Ti:sapphire

Further reading
Exercises

8 Dynamic cavity effects
8.1 Laser spiking and relaxation oscillations
8.1.1 Rate-equation analysis
8.1.2 Analysis of relaxation oscillations
8.1.3 Numerical analysis of laser spiking

8.2 Q-switching
8.2.1 Techniques for Q-switching
8.2.2 Rate-equation analysis of Q-switching
8.2.3 Comparison with numerical simulations

8.3 Modelocking
8.3.1 General ideas
8.3.2 Simple treatment of modelocking
8.3.3 Active modelocking techniques
8.3.4 Passive modelocking techniques
9 Semiconductor lasers 226
 9.1 Basic features of a typical semiconductor diode laser 226
 9.2 Review of semiconductor physics 228
 9.2.1 Band structure 228
 9.2.2 Density of states and the Fermi energy \((T = 0\text{ K})\) 231
 9.2.3 The Fermi–Dirac distribution \((T \neq 0\text{ K})\) 232
 9.2.4 Doped semiconductors 233
 9.3 Radiative transitions in semiconductors 235
 9.4 Gain at a p-i-n junction 236
 9.5 Gain in diode lasers 238
 9.6 Carrier and photon confinement: the double heterostructure 241
 9.7 Laser materials 243
 9.8 Quantum-well lasers† 244
 9.9 Laser threshold 247
 9.10 Diode laser beam properties 250
 9.10.1 Beam shape 250
 9.10.2 Transverse modes of edge-emitting lasers 250
 9.10.3 Longitudinal modes of diode lasers 251
 9.10.4 Single longitudinal mode diode lasers 253
 9.10.5 Diode laser linewidth 254
 9.10.6 Tunable diode laser cavities† 255
 9.11 Diode laser output power† 257
 9.12 VCSEL lasers† 259
 9.13 Strained-layer lasers 261
 9.14 Quantum cascade lasers† 262
Further reading
Exercises 264

10 Fibre lasers 267
 10.1 Optical fibres 267
 10.1.1 The importance of optical-fibre technology 267
 10.1.2 Optical-fibre properties: Ray optics 268
 10.1.3 Optical-fibre properties: Wave optics 271
 10.1.4 Dispersion in optical fibres 274
 10.1.5 Fabrication of optical fibres 276
 10.1.6 Fibre-optic components 277
 10.2 Wavelength bands for fibre-optic telecommunications 280
 10.3 Erbium-doped fibre amplifiers 282
 10.3.1 Energy levels and pumping schemes 282
 10.3.2 Gain spectra 282
 10.3.3 EDFA design and layout 284
 10.3.4 Fabrication of erbium-doped fibre amplifiers 285
 10.4 Fibre Raman amplifiers 285
 10.4.1 Introduction 285
10.4.2 Raman scattering 285
10.4.3 Fibre Raman amplifiers 286
10.4.4 Long-haul optical transmission systems 287
10.5 High-power fibre lasers 289
 10.5.1 The revolution in fibre-laser performance 289
 10.5.2 Cladding-pumped fibre-laser design 290
 10.5.3 Materials and mechanisms of cladding-pumped fibre-laser systems 291
 10.5.4 High-power fibre lasers: Linewidth considerations 291
10.6 High-power pulsed fibre lasers 293
 10.6.1 Large mode area (LMA) fibres 293
 10.6.2 Q-switched fibre lasers 294
 10.6.3 Oscillator–amplifier pulsed fibre lasers 294
10.7 Applications of high-power fibre lasers 295
Further reading 296
Exercises 296

11 Atomic gas lasers 298
11.1 Discharge physics interlude 298
 11.1.1 Low-pressure and high-pressure discharges 298
 11.1.2 Low-pressure glow discharge 299
 11.1.3 Temperatures 300
 11.1.4 The steady-state positive column 303
 11.1.5 Ionization rates 306
 11.1.6 Excitation rates 307
 11.1.7 Second-kind or superelastic collisions 310
 11.1.8 Excited-state populations in low-pressure discharges 311
11.2 The helium-neon laser 314
 11.2.1 Introduction 314
 11.2.2 Energy levels, transitions and excitation mechanisms 316
 11.2.3 Laser construction and operating parameters 318
 11.2.4 Output-power limitations of the He-Ne laser 319
 11.2.5 Applications of He-Ne lasers 321
11.3 The argon-ion laser 321
 11.3.1 Introduction 321
 11.3.2 Energy levels, transitions and excitation mechanisms 322
 11.3.3 Laser construction and operating parameters 325
 11.3.4 Argon-ion laser: Power limitations 327
 11.3.5 Krypton-ion lasers 328
 11.3.6 Applications of ion lasers 329
Further reading 329
Exercises 329

12 Infra-red molecular gas lasers 332
12.1 Efficiency considerations 332
 12.1.1 Energy levels of atoms and molecules 332
 12.1.2 Quantum ratio 333
16.3 Output linewidth 440
 16.3.1 The Schawlow–Townes limit 441
 16.3.2 Practical limitations 444
 16.3.3 Intensity noise 446
16.4 Frequency locking 448
 16.4.1 Locking to atomic or molecular transitions 450
 16.4.2 Locking to an external cavity 452
16.5 Frequency combs 453
Further reading 456
Exercises 456

17 Ultrafast lasers 462
 17.1 Propagation of ultrafast laser pulses in dispersive media 462
 17.1.1 The time–bandwidth product 462
 17.1.2 General considerations 463
 17.1.3 Propagation through a dispersive system 466
 17.1.4 Propagation of Gaussian pulses 469
 17.1.5 Non-linear effects: self-phase modulation and the B-integral 472
 17.2 Dispersion control 474
 17.2.1 Geometric dispersion control 474
 17.2.2 Chirped mirrors 478
 17.2.3 Pulse shaping 480
 17.3 Sources of ultrafast optical pulses 482
 17.3.1 Modelocked lasers 482
 17.3.2 Oscillators 483
 17.3.3 Chirped-pulse amplification (CPA) 483
 17.4 Measurement of ultrafast pulses 489
 17.4.1 Autocorrelators 489
 17.4.2 Methods for exact reconstruction of the pulse 492
Further reading 495
Exercises 495

18 Short-wavelength lasers 502
 18.1 Definition of wavelength ranges 503
 18.2 Difficulties in achieving optical gain at short wavelengths 503
 18.2.1 Pump-power scaling 503
 18.3 General properties of short-wavelength lasers 505
 18.3.1 Travelling-wave pumping 505
 18.3.2 Threshold and saturation behaviour in an ASE laser 506
 18.3.3 Spectral width of the output 508
 18.3.4 Coherence properties of ASE lasers 509
 18.4 Laser-generated plasmas† 510
 18.4.1 Inverse bremsstrahlung heating 510
 18.4.2 Generation of highly ionized plasmas from laser-solid interactions 511
 18.4.3 Optical field ionization 514
 18.5 Collisionally excited lasers 517
18.5.1 Ne-like ions† 518
18.5.2 Ni-like ions† 520
18.5.3 Methods of pumping 520
18.5.4 Collisionally excited OFI lasers 528
18.6 Recombination lasers 530
18.6.1 H-like carbon 532
18.6.2 OFI recombination lasers 533
18.7 Other sources 535
18.7.1 High-harmonic generation 535
18.7.2 Free-electron lasers 537
Further reading 541
Exercises 541

Appendix A: The semi-classical theory of the interaction of radiation and matter 548
A.1 The amplitude equations 548
A.1.1 Derivation of the amplitude equations 548
A.1.2 Solution of the amplitude equations 550
A.2 Calculation of the Einstein B coefficient 551
A.2.1 Polarized atoms and radiation 551
A.2.2 Unpolarized atoms and/or radiation 553
A.2.3 Treatment of degeneracy 554
A.3 Relations between the Einstein coefficients 555
A.4 Validity of rate equations 555

Appendix B: The spectral Einstein coefficients 557

Appendix C: Kleinman’s conjecture 560

Bibliography 563

Index 579