<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10</td>
<td>Mobile Broadband for Laptop and Netbook Connectivity</td>
<td>27</td>
</tr>
<tr>
<td>2.10.1</td>
<td>End-to-End Security</td>
<td>29</td>
</tr>
<tr>
<td>2.10.2</td>
<td>Impact of Latency on Application Performance</td>
<td>29</td>
</tr>
<tr>
<td>2.11</td>
<td>Social Networking</td>
<td>30</td>
</tr>
<tr>
<td>2.12</td>
<td>Mobile TV</td>
<td>31</td>
</tr>
<tr>
<td>2.13</td>
<td>Location-Based Services</td>
<td>32</td>
</tr>
<tr>
<td>2.13.1</td>
<td>Cell Coverage-Based Location Calculation</td>
<td>33</td>
</tr>
<tr>
<td>2.13.2</td>
<td>Assisted GPS (A-GPS)</td>
<td>33</td>
</tr>
<tr>
<td>2.14</td>
<td>Machine-to-Machine Communications</td>
<td>34</td>
</tr>
<tr>
<td>2.15</td>
<td>Quality of Service (QoS) Differentiation</td>
<td>35</td>
</tr>
<tr>
<td>2.16</td>
<td>Maximum Air Interface Capacity</td>
<td>40</td>
</tr>
<tr>
<td>2.17</td>
<td>Terminals</td>
<td>44</td>
</tr>
<tr>
<td>2.18</td>
<td>Tariff Schemes</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Introduction to WCDMA</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Peter Muszynski and Harri Holma</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Summary of the Main Parameters in WCDMA</td>
<td>47</td>
</tr>
<tr>
<td>3.3</td>
<td>Spreading and Despreading</td>
<td>49</td>
</tr>
<tr>
<td>3.4</td>
<td>Multipath Radio Channels and Rake Reception</td>
<td>51</td>
</tr>
<tr>
<td>3.5</td>
<td>Power Control</td>
<td>55</td>
</tr>
<tr>
<td>3.6</td>
<td>Softer and Soft Handovers</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>59</td>
</tr>
<tr>
<td>4</td>
<td>Background and Standardization of WCDMA</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>Antti Toskala</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>61</td>
</tr>
<tr>
<td>4.2</td>
<td>Background in Europe</td>
<td>61</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Wideband CDMA</td>
<td>62</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Wideband TDMA</td>
<td>63</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Wideband TDMA/CDMA</td>
<td>63</td>
</tr>
<tr>
<td>4.2.4</td>
<td>OFDMA</td>
<td>64</td>
</tr>
<tr>
<td>4.2.5</td>
<td>ODMA</td>
<td>64</td>
</tr>
<tr>
<td>4.2.6</td>
<td>ETSI Selection</td>
<td>64</td>
</tr>
<tr>
<td>4.3</td>
<td>Background in Japan</td>
<td>64</td>
</tr>
<tr>
<td>4.4</td>
<td>Background in Korea</td>
<td>65</td>
</tr>
<tr>
<td>4.5</td>
<td>Background in the United States</td>
<td>65</td>
</tr>
<tr>
<td>4.5.1</td>
<td>W-CDMA N/A</td>
<td>65</td>
</tr>
<tr>
<td>4.5.2</td>
<td>UWC-136</td>
<td>66</td>
</tr>
<tr>
<td>4.5.3</td>
<td>cdma2000</td>
<td>66</td>
</tr>
<tr>
<td>4.5.4</td>
<td>TR46.1</td>
<td>66</td>
</tr>
<tr>
<td>4.5.5</td>
<td>WP-CDMA</td>
<td>66</td>
</tr>
<tr>
<td>4.6</td>
<td>Creation of 3GPP</td>
<td>67</td>
</tr>
<tr>
<td>4.7</td>
<td>How Does 3GPP Operate?</td>
<td>68</td>
</tr>
<tr>
<td>4.8</td>
<td>Creation of 3GPP2</td>
<td>69</td>
</tr>
<tr>
<td>4.9</td>
<td>Harmonization Phase</td>
<td>69</td>
</tr>
<tr>
<td>4.10</td>
<td>IMT-2000 Process in ITU</td>
<td>70</td>
</tr>
<tr>
<td>4.11</td>
<td>Beyond 3GPP Release 99 WCDMA</td>
<td>70</td>
</tr>
<tr>
<td>4.12</td>
<td>Industry Convergence with LTE and LTE-Advanced</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>73</td>
</tr>
</tbody>
</table>
5 Radio Access Network Architecture 75
Fabio Longoni, Atte Länsisalmi and Antti Toskala

5.1 Introduction 75
5.2 UTRAN Architecture 78
5.2.1 The Radio Network Controller (RNC) 79
5.2.2 The Node B (Base Station) 80
5.3 General Protocol Model for UTRAN Terrestrial Interfaces 80
5.3.1 General 80
5.3.2 Horizontal Layers 80
5.3.3 Vertical Planes 80
5.4 Iu, the UTRAN–CN Interface 81
5.4.1 Protocol Structure for Iu CS 82
5.4.2 Protocol Structure for Iu PS 83
5.4.3 RANAP Protocol 84
5.4.4 Iu User Plane Protocol 85
5.4.5 Protocol Structure of Iu BC, and the Service Area Broadcast Protocol 86
5.5 UTRAN Internal Interfaces 87
5.5.1 RNC–RNC Interface (Iur Interface) and the RNSAP Signaling 87
5.5.2 RNC–Node B Interface and the NBAP Signaling 89
5.6 UTRAN Enhancements and Evolution 91
5.6.1 IP Transport in UTRAN 91
5.6.2 Iu Flex 92
5.6.3 Stand-Alone SMLC and Iupc Interface 92
5.6.4 Interworking between GERAN and UTRAN, and the Iur-g Interface 92
5.6.5 IP-Based RAN Architecture 92
5.7 UMTS CN Architecture and Evolution 93
5.7.1 Release 99 CN Elements 93
5.7.2 Release 5 CN and IP Multimedia Subsystem 94
References 95

6 Physical Layer 97
Antti Toskala

6.1 Introduction 97
6.2 Transport Channels and Their Mapping to the Physical Channels 98
6.2.1 Dedicated Transport Channel 99
6.2.2 Common Transport Channels 99
6.2.3 Mapping of Transport Channels onto the Physical Channels 101
6.2.4 Frame Structure of Transport Channels 102
6.3 Spreading and Modulation 102
6.3.1 Scrambling 102
6.3.2 Channelization Codes 102
6.3.3 Uplink Spreading and Modulation 104
6.3.4 Downlink Spreading and Modulation 107
6.3.5 Transmitter Characteristics 110
6.4 User Data Transmission 110
6.4.1 Uplink Dedicated Channel 111
6.4.2 Uplink Multiplexing 113
6.4.3 User Data Transmission with the Random Access Channel 115
6.4.4 Uplink Common Packet Channel 115
6.4.5 Downlink Dedicated Channel 116
6.4.6 Downlink Multiplexing 117
6.4.7 Downlink Shared Channel 119
6.4.8 Forward Access Channel for User Data Transmission 119
6.4.9 Channel Coding for User Data 120
6.4.10 Coding for TFCI Information 121

6.5 Signaling 121
6.5.1 Common Pilot Channel (CPICH) 121
6.5.2 Synchronization Channel (SCH) 122
6.5.3 Primary Common Control Physical Channel (Primary CCPCH) 122
6.5.4 Secondary Common Control Physical Channel (Secondary CCPCH) 123
6.5.5 Random Access Channel (RACH) for Signaling Transmission 124
6.5.6 Acquisition Indicator Channel (AICH) 124
6.5.7 Paging Indicator Channel (PICH) 125

6.6 Physical Layer Procedures 126
6.6.1 Fast Closed-Loop Power Control Procedure 126
6.6.2 Open-Loop Power Control 126
6.6.3 Paging Procedure 127
6.6.4 RACH Procedure 127
6.6.5 Cell Search Procedure 128
6.6.6 Transmit Diversity Procedure 129
6.6.7 Handover Measurements Procedure 130
6.6.8 Compressed Mode Measurement Procedure 132
6.6.9 Other Measurements 133
6.6.10 Operation with Adaptive Antennas 134
6.6.11 Site Selection Diversity Transmission 135

6.7 Terminal Radio Access Capabilities 136
6.8 Conclusion 138

References 139

7 Radio Interface Protocols 141
Jukka Vialén and Antti Toskala

7.1 Introduction 141
7.2 Protocol Architecture 142
7.3 The Medium Access Control Protocol 143
7.3.1 MAC Layer Architecture 143
7.3.2 MAC Functions 144
7.3.3 Logical Channels 145
7.3.4 Mapping between Logical Channels and Transport Channels 145
7.3.5 Example Data Flow Through the MAC Layer 146
7.4 The Radio Link Control Protocol 147
7.4.1 RLC Layer Architecture 147
7.4.2 RLC Functions 148
7.4.3 Example Data Flow Through the RLC Layer 149
7.5 The Packet Data Convergence Protocol 150
7.5.1 PDCP Layer Architecture 150
7.5.2 PDCP Functions 151
7.6 The Broadcast/Multicast Control Protocol 151
7.6.1 BMC Layer Architecture 152
7.6.2 BMC Functions 152
7.7 Multimedia Broadcast Multicast Service 152
7.8 The Radio Resource Control Protocol 153
8 Radio Network Planning

Harri Holma, Zhi-Chun Honkasalo, Seppo Hämäläinen, Jaana Latho, Kari Sipilä and Achim Wacker

8.1 Introduction 173
8.2 Dimensioning 174
 8.2.1 Radio Link Budgets 175
 8.2.2 Load Factors 178
 8.2.3 Capacity Upgrade Paths 188
 8.2.4 Capacity per km² 189
 8.2.5 Soft Capacity 190
 8.2.6 Network Sharing 193
8.3 Capacity and Coverage Planning and Optimization 194
 8.3.1 Iterative Capacity and Coverage Prediction 194
 8.3.2 Planning Tool 194
 8.3.3 Case Study 197
 8.3.4 Network Optimization 199
8.4 GSM Co-planning 202
8.5 Inter-Operator Interference 204
 8.5.1 Introduction 204
 8.5.2 Uplink Versus Downlink Effects 206
 8.5.3 Local Downlink Interference 206
 8.5.4 Average Downlink Interference 207
 8.5.5 Path Loss Measurements 209
 8.5.6 Solutions to Avoid Adjacent Channel Interference 209
8.6 WCDMA Frequency Variants 210
8.7 UMTS Refarming to GSM Band 211
 8.7.1 Coverage of UMTS900 212
8.8 Interference between GSM and UMTS 214
8.9 Remaining GSM Voice Capacity 215
8.10 Shared Site Solutions with GSM and UMTS 216
8.11 Interworking of UMTS900 and UMTS2100 217
References 218

9 Radio Resource Management

Harri Holma, Klaus Pedersen, Jussi Reunanen, Janne Laakso and Oscar Salonaho

9.1 Introduction 219
9.2 Power Control 220
 9.2.1 Fast Power Control 220
 9.2.2 Outer Loop Power Control 226
9.3 Handovers 232
 9.3.1 Intra-Frequency Handovers 232
 9.3.2 Inter-System Handovers between WCDMA and GSM 241
9.3.3 *Inter-Frequency Handovers within WCDMA* 244
9.3.4 *Summary of Handovers* 245

9.4 Measurement of Air Interface Load 246
9.4.1 *Uplink Load* 246
9.4.2 *Downlink Load* 249

9.5 Admission Control 250
9.5.1 *Admission Control Principle* 250
9.5.2 *Wideband Power-Based Admission Control Strategy* 250
9.5.3 *Throughput-Based Admission Control Strategy* 252

9.6 Load Control (Congestion Control) 252
References 253

10 *Packet Scheduling* 255
Jeroen Wigard, Harri Holma, Renaud Cuny, Nina Madsen, Frank Frederiksen and Martin Kristensson

10.1 Introduction 255
10.2 Transmission Control Protocol (TCP) 255
10.3 Round Trip Time 261
10.4 User-Specific Packet Scheduling 264
10.4.1 *Common Channels (RACH/FACH)* 264
10.4.2 *Dedicated Channel (DCH)* 265
10.4.3 *Downlink Shared Channel (DSCH)* 267
10.4.4 *Uplink Common Packet Channel (CPCH)* 267
10.4.5 Selection of Transport Channel 268
10.4.6 *Paging Channel States* 270
10.5 Cell-Specific Packet Scheduling 272
10.5.1 Priorities 274
10.5.2 Scheduling Algorithms 274
10.5.3 Packet Scheduler in Soft Handover 275
10.6 Packet Data System Performance 275
10.6.1 *Link Level Performance* 275
10.6.2 *System Level Performance* 277
10.7 Packet Data Application Performance 280
10.7.1 *Introduction to Application Performance* 280
10.7.2 *Person-to-Person Applications* 281
10.7.3 *Content-to-Person Applications* 284
10.7.4 *Business Connectivity* 287
10.7.5 Conclusions on Application Performance 289
References 291

11 *Physical Layer Performance* 293
Harri Holma, Jussi Reunanen, Leo Chan, Preben Mogensen, Klaus Pedersen, Kari Horneman, Jaakko Vihriälä and Markku Juntti

11.1 Introduction 293
11.2 Cell Coverage 293
11.2.1 *Uplink Coverage* 295
11.2.2 *Downlink Coverage* 304
11.3 Downlink Cell Capacity 304
11.3.1 *Downlink Orthogonal Codes* 305
11.3.2 Downlink Transmit Diversity 310
11.3.3 Downlink Voice Capacity 312
11.4 Capacity Trials 313
11.4.1 Single Cell Capacity Trials 313
11.4.2 Multicell Capacity Trials 327
11.4.3 Summary 328
11.5 3GPP Performance Requirements 330
11.5.1 E_b/N_0 Performance 330
11.5.2 RF Noise Figure 333
11.6 Performance Enhancements 334
11.6.1 Smart Antenna Solutions 334
11.6.2 Multiuser Detection 340
References 349

12 High-Speed Downlink Packet Access 353
Antti Toskala, Harri Holma, Troels Kolding, Preben Mogensen, Klaus Pedersen and Jussi Reunanen

12.1 Introduction 353
12.2 Release 99 WCDMA Downlink Packet Data Capabilities 353
12.3 The HSDPA Concept 354
12.4 HSDPA Impact on Radio Access Network Architecture 356
12.5 Release 4 HSDPA Feasibility Study Phase 357
12.6 HSDPA Physical Layer Structure 357
12.6.1 High-Speed Downlink Shared Channel (HS-DSCH) 357
12.6.2 High-Speed Shared Control Channel (HS-SCCH) 361
12.6.3 Uplink High-Speed Dedicated Physical Control Channel (HS-DPCCH) 362
12.6.4 HSDPA Physical Layer Operation Procedure 363
12.7 HSDPA Terminal Capability and Achievable Data Rates 365
12.8 Mobility with HSDPA 366
12.8.1 Measurement Event for Best Serving HS-DSCH Cell 367
12.8.2 Intra-Node B HS-DSCH to HS-DSCH Handover 367
12.8.3 Inter-Node B HS-DSCH to HS-DSCH Handover 368
12.8.4 HS-DSCH to DCH Handover 369
12.9 HSDPA Performance 370
12.9.1 Factors Governing Performance 371
12.9.2 Spectral Efficiency, Code Efficiency and Dynamic Range 371
12.9.3 User Scheduling, Cell Throughput and Coverage 374
12.9.4 HSDPA Network Performance with Mixed Non-HSDPA and HSDPA Terminals 378
12.10 HSPA Link Budget 380
12.11 HSDPA Iub Dimensioning 382
12.12 HSPA Round Trip Time 384
12.13 Terminal Receiver Aspects 384
12.14 Evolution in Release 6 386
12.15 Conclusion 388
References 388

13 High-Speed Uplink Packet Access 391
Antti Toskala, Harri Holma and Karri Ranta-aho

13.1 Introduction 391
13.2 Release 99 WCDMA Downlink Packet Data Capabilities 391
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>HSPA Evolution</td>
<td>431</td>
</tr>
<tr>
<td>15.1</td>
<td>Introduction</td>
<td>431</td>
</tr>
<tr>
<td>15.2</td>
<td>Discontinuous Transmission and Reception (DTX/DRX)</td>
<td>431</td>
</tr>
<tr>
<td>15.3</td>
<td>Circuit Switched Voice on HSPA</td>
<td>433</td>
</tr>
<tr>
<td>15.4</td>
<td>Enhanced FACH and Enhanced RACH</td>
<td>437</td>
</tr>
<tr>
<td>15.5</td>
<td>Latency</td>
<td>439</td>
</tr>
<tr>
<td>15.6</td>
<td>Fast Dormancy</td>
<td>441</td>
</tr>
<tr>
<td>15.7</td>
<td>Downlink 64QAM</td>
<td>442</td>
</tr>
<tr>
<td>15.8</td>
<td>Downlink MIMO</td>
<td>444</td>
</tr>
<tr>
<td>15.9</td>
<td>Transmit Diversity (TxAA)</td>
<td>447</td>
</tr>
<tr>
<td>15.10</td>
<td>Uplink 16QAM</td>
<td>448</td>
</tr>
<tr>
<td>15.11</td>
<td>UE Categories</td>
<td>449</td>
</tr>
<tr>
<td>15.12</td>
<td>Layer 2 Optimization</td>
<td>450</td>
</tr>
<tr>
<td>15.13</td>
<td>Architecture Evolution</td>
<td>451</td>
</tr>
<tr>
<td>15.14</td>
<td>Conclusion</td>
<td>452</td>
</tr>
<tr>
<td>16</td>
<td>References</td>
<td>453</td>
</tr>
<tr>
<td>16</td>
<td>HSPA Multicarrier Evolution</td>
<td>455</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction</td>
<td>455</td>
</tr>
<tr>
<td>16.2</td>
<td>Dual Cell HSDPA in Release 8</td>
<td>459</td>
</tr>
<tr>
<td>16.3</td>
<td>Dual Cell HSUPA in Release 9</td>
<td>461</td>
</tr>
<tr>
<td>16.4</td>
<td>Dual Cell HSDPA with MIMO in Release 9</td>
<td>462</td>
</tr>
<tr>
<td>16.5</td>
<td>Dual Band HSDPA in Release 9</td>
<td>463</td>
</tr>
<tr>
<td>16.6</td>
<td>Three and Four Carrier HSDPA in Release 10</td>
<td>464</td>
</tr>
<tr>
<td>16.7</td>
<td>UE Categories</td>
<td>465</td>
</tr>
<tr>
<td>16.8</td>
<td>Conclusion</td>
<td>465</td>
</tr>
<tr>
<td>16.9</td>
<td>References</td>
<td>466</td>
</tr>
<tr>
<td>17</td>
<td>UTRAN Long-Term Evolution</td>
<td>467</td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>467</td>
</tr>
<tr>
<td>17.2</td>
<td>Multiple Access and Architecture Decisions</td>
<td>468</td>
</tr>
<tr>
<td>17.3</td>
<td>LTE Impact on Network Architecture</td>
<td>470</td>
</tr>
<tr>
<td>17.4</td>
<td>LTE Multiple Access</td>
<td>471</td>
</tr>
<tr>
<td>17.4.1</td>
<td>OFDMA Principles</td>
<td>471</td>
</tr>
<tr>
<td>17.4.2</td>
<td>SC-FDMA Principles</td>
<td>474</td>
</tr>
<tr>
<td>17.5</td>
<td>LTE Physical Layer Design and Parameters</td>
<td>476</td>
</tr>
<tr>
<td>17.6</td>
<td>LTE Physical Layer Procedures</td>
<td>479</td>
</tr>
<tr>
<td>17.6.1</td>
<td>Random Access</td>
<td>479</td>
</tr>
<tr>
<td>17.6.2</td>
<td>Data Reception and Transmission</td>
<td>479</td>
</tr>
<tr>
<td>17.6.3</td>
<td>CQI Procedure</td>
<td>481</td>
</tr>
<tr>
<td>17.6.4</td>
<td>Downlink Transmission Modes</td>
<td>482</td>
</tr>
<tr>
<td>17.6.5</td>
<td>Uplink Transmission Modes</td>
<td>483</td>
</tr>
<tr>
<td>17.6.6</td>
<td>LTE Physical Layer Compared to WCDMA</td>
<td>483</td>
</tr>
<tr>
<td>17.7</td>
<td>LTE Protocols</td>
<td>483</td>
</tr>
</tbody>
</table>
17.8 Performance
 17.8.1 Peak Bit Rates
 17.8.2 Spectral Efficiency
 17.8.3 Link Budget and Coverage
17.9 LTE Device Categories
17.10 LTE-Advanced Outlook
17.11 Conclusion
References

18 TD-SCDMA
Antti Toskala and Harri Holma
18.1 Introduction
 18.1.1 TDD
18.2 Differences in the Network-Level Architecture
18.3 TD-SCDMA Physical Layer
 18.3.1 Transport and Physical Channels
 18.3.2 Modulation and Spreading
 18.3.3 Physical Channel Structures, Slot and Frame Format
18.4 TD-SCDMA Data Rates
18.5 TD-SCDMA Physical Layer Procedures
 18.5.1 Power Control
 18.5.2 TD-SCDMA Receiver
 18.5.3 Uplink Synchronization
 18.5.4 Dynamic Channel Allocation
 18.5.5 Summary of the TD-SCDMA Physical Layer Operation
18.6 TD-SCDMA Interference and Co-existence Considerations
 18.6.1 TDD–TDD Interference
 18.6.2 TDD and FDD Co-existence
 18.6.3 Conclusions on TDD and TD-SCDMA Interference
18.7 Conclusion and Future Outlook on TD-SCDMA
References

19 Home Node B and Femtocells
Troels Kolding, Hanns-Jürgen Schwarzbauer, Johanna Pekonen, Karol Drazynski, Jacek Gora, Maciej Pakulski, Patryk Pisowacki, Harri Holma and Antti Toskala
19.1 Introduction
19.2 Home Node B Specification Work
19.3 Technical Challenges of Uncoordinated Mass Deployment
19.4 Home Node B Architecture
 19.4.1 Home Node B Protocols and Procedures for Network Interfaces
 19.4.2 Femtocell Indication on a Terminal Display
19.5 Closed Subscriber Group
 19.5.1 Closed Subscriber Group Management
 19.5.2 Closed Subscriber Group Access Control
19.6 Home Node B-Related Mobility
 19.6.1 Idle Mode Mobility
 19.6.2 Outbound Relocations
 19.6.3 Inbound Relocations
 19.6.4 Relocations between HNB Cells
 19.6.5 Paging Optimization