Introduction to Microfabrication
Second Edition

Sami Franssila

Professor of Materials Science at Aalto University
and Adjunct Professor of Micro- and Nanotechnology
at University of Helsinki, Finland

©WILEY
A John Wiley and Sons, Ltd., Publication
Contents

Preface to the First Edition ix
Preface to the Second Edition xiii
Acknowledgements xv

1 Introduction 1
Substrates, Thin Films, Processes, Dimensions, Devices, MOS Transistor, Cleanliness and Yield, Industries, Exercises
References and Related Reading

2 Micrometrology and Materials Characterization 15
Microscopy and Visualization, Lateral and Vertical Dimensions, Optical Techniques, Electrical Measurements, Physical and Chemical Analyses, Practical Issues with Micrometrology, Measurements Everywhere, Exercises
References and Related Reading

3 Simulation of Microfabrication Processes 29
Simulator Types, Levels of Simulation, The 1D Simulators, The 2D Simulators, The 3D Simulators, Other Simulation Needs in Microfabrication, Exercises
References and Related Reading

4 Silicon 35
References and Related Reading

5 Thin-Film Materials and Processes 47
References and Related Reading

6 Epitaxy 69
Heteroepitaxy, Epitaxial Deposition, CVD Homoeptaxy of Silicon, Doping of Epilayers, Measurement of Epitaxial Deposition, Simulation of Epitaxy, Advanced Epitaxy, Exercises
References and Related Reading

7 Advanced Thin Films 77
General Features of Thin-Film Processes, Film Growth and Structure, Thin-Film Structure Characterization, Surfaces and Interfaces, Adhesion, Two-Layer Films, Alloys and Doped Films, Multilayer Films, Selective Deposition, Reacted Films, Simulation of Deposition, Thickness Limits of Thin Films, Exercises
References and Related Reading

8 Pattern Generation 93
Pattern Generators, Electron Beam Lithography, Laser Pattern Generators, Photomask Fabrication, Photomask Inspection, Defects and Repair, Photomasks as Tools, Other Pattern Generation Methods, Exercises
References and Related Reading

9 Optical Lithography 103
Lithography Process Flow, Resist Chemistry, Resist Application, Alignment and Overlay, Exposure, Resist Profile, Resolution, Process Latitude, Basic Pattern Shapes, Lithography Practice, Photoresist Stripping, Exercises
References and Related Reading

10 Advanced Lithography 115
Projection Optical Systems, Resolution of Projection Optical Systems, Resists, Thin-Film Optics in Resists, Lithography Over Steps, Optical Extensions
23 Special Processes and Materials 283
Substrates other than Silicon, Pattern Generation, Patterning, Powder Blasting, Deposition, Porous Silicon, Molding with Lost Mold, Exercises References and Related Reading

24 Serial Microprocessing 299
Focused Ion Beam (FIB) Processing, Focused Electron Beam (FEB) Processing, Laser Direct Writing, AFM Patterning, Ink Jetting, Mechanical Structuring, Chemical and Chemomechanical Machining Scaled Down, Conclusions, Exercises References and Related Reading

25 Process Integration 313

26 MOS Transistor Fabrication 329
Polyisilicon Gate CMOS, Polysilicon Gate CMOS: 10μm to 1μm Generations, MOS Transistor Scaling, CMOS from 0.8μm to 65 nm, Gate Module, SOI MOSFETs, Thin-Film Transistors, Integrated Circuits, Exercises References and Related Reading

27 Bipolar Transistors 347
Fabrication Process of SBC Bipolar Transistor, Advanced Bipolar Structures, Lateral Isolation, BiCMOS Technology, Cost of Integration, Exercises References and Related Reading

28 Multilevel Metallization 357
Two-Level Metallization, Planarized Multilevel Metallization, Copper Metallization, Dual Damascene Metallization, Low-k Dielectrics, Metallization Scaling, Exercises References and Related Reading

29 Surface Micromachining 369
Single Structural Layer Devices, Materials for Surface Micromachining, Mechanics of Free-Standing Films, Cantilever Structures, Membranes and Bridges, Stiction, Multiple Layer Structures, Rotating Structures, Hinged Structures, CMOS Wafers as Substrates, Exercises References and Related Reading

30 MEMS Process Integration 387
Silicon Microbridges, Double-Sided Processing, Membrane Structures, Piezoresistive Pressure Sensor, Tilting and Bending Through-Wafer Etched Structures, Needles and Tips, Channels and Nozzles, Bonded Structures, Surface Micromachining Combined with Bulk Micromachining, MEMS Packaging, Microsystems, Exercises References and Related Reading

31 Process Equipment 409

32 Equipment for Hot Processes 419
High-Temperature Equipment: Hot Wall vs. Cold Wall, Furnace Processes, Rapid Thermal Processing/Rapid Thermal Annealing, Furnaces vs. RTP Systems, Exercises References and Related Reading

33 Vacuum and Plasmas 425
Vacuum Physics and Kinetic Theory of Gases, Vacuum Production, Plasma Etching, Sputtering, Residual Gas Incorporation into Deposited Film, PECVD, Residence Time, Exercises References and Related Reading

34 CVD and Epitaxy Equipment 433
Deposition Rate, CVD Rate Modeling, CVDReactors, CVD with Liquid Sources, Silicon CVD Epitaxy, Epitaxial Reactors, Control of CVD Reactions, Exercises References and Related Reading

35 Cleanrooms 441
Cleanroom Construction, Cleanroom Standards, Cleanroom Subsystems, Environment, Safety and Health (ESH), Cleanroom Operating Procedures, Mini-Environments, Exercises References and Related Reading
36 Yield and Reliability 449
Yield Definitions and Formulas, Yield Models, Yield Ramping, Package Reliability, Metallization Reliability, Dielectric Defects and Quality, Stress Migration, Die Yield Loss, Exercises References and Related Reading

37 Economics of Microfabrication 457
Silicon, IC Costs and Prices, IC Industry, IC Wafer Fabs, MEMS Industry, Flat-Panel Display Industry, Solar Cells, Magnetic Data Storage, Short Term and Long Term, Exercises References and Related Reading

38 Moore’s Law and Scaling Trends 469
From Transistor to Integrated Circuit, Historical Development of IC Manufacturing, MOS Scaling, Departure from Planar Bulk Technology, Memories, Lithography Future, Moore’s Law, Materials Challenges, Statistics and Yield, Limits of Scaling, Exercises References and Related Reading

39 Microfabrication at Large 485
New Devices, Proliferation of MEMS, Microfluidics, BioMEMS, Bonding and 3D Integration, IC–MEMS Integration, Microfabricated Devices for Microfabrication, Exercises References and Related Reading

Appendix A Properties of Silicon 499
Appendix B Constants and Conversion Factors 501
Appendix C Oxide and Nitride Thickness by Color 503
Index 505