An Introduction to
Gödel’s Theorems

Peter Smith
University of Cambridge
Contents

Preface xiii

1 What Gödel's Theorems say 1
 Basic arithmetic • Incompleteness • More incompleteness • Some implica-
 tions? • The unprovability of consistency • More implications? • What's
 next?

2 Decidability and enumerability 8
 Functions • Effective decidability, effective computability • Enumerable
 sets • Effective enumerability • Effectively enumerating pairs of numbers

3 Axiomatized formal theories 17
 Formalization as an ideal • Formalized languages • Axiomatized formal
 theories • More definitions • The effective enumerability of theorems •
 Negation-complete theories are decidable

4 Capturing numerical properties 28
 Three remarks on notation • A remark about extensionality • The language
 L_A • A quick remark about truth • Expressing numerical properties and
 relations • Capturing numerical properties and relations • Expressing vs.
 capturing: keeping the distinction clear

5 The truths of arithmetic 37
 Sufficiently expressive languages • More about effectively enumerable sets
 • The truths of arithmetic are not effectively enumerable • Incompleteness

6 Sufficiently strong arithmetics 43
 The idea of a 'sufficiently strong' theory • An undecidability theorem •
 Another incompleteness theorem

7 Interlude: Taking stock 47
 Comparing incompleteness arguments • A road-map

8 Two formalized arithmetics 51
 BA, Baby Arithmetic • BA is negation complete • Q, Robinson Arithmetic
 • Q is not complete • Why Q is interesting
Contents

9 What Q can prove 58
Systems of logic • Capturing less-than-or-equal-to in Q • Adding ‘≤’ to Q • Q is order-adequate • Defining the \(\Delta_0 \), \(\Sigma_1 \) and \(\Pi_1 \) wffs • Some easy results • Q is \(\Sigma_1 \)-complete • Intriguing corollaries • Proving Q is order-adequate

10 First-order Peano Arithmetic 71
Induction and the Induction Schema • Induction and relations • Arguing using induction • Being more generous with induction • Summary overview of PA • Hoping for completeness? • Where we’ve got to • Is PA consistent?

11 Primitive recursive functions 83
Introducing the primitive recursive functions • Defining the p.r. functions more carefully • An aside about extensionality • The p.r. functions are computable • Not all computable numerical functions are p.r. • Defining p.r. properties and relations • Building more p.r. functions and relations • Further examples

12 Capturing p.r. functions 99
Capturing a function • Two more ways of capturing a function • The idea of p.r. adequacy

13 Q is p.r. adequate 106
More definitions • Q can capture all \(\Sigma_1 \) functions • \(L_A \) can express all p.r. functions: starting the proof • The idea of a \(\beta \)-function • \(L_A \) can express all p.r. functions: finishing the proof • The p.r. functions are \(\Sigma_1 \) • The adequacy theorem • Canonically capturing

14 Interlude: A very little about Principia 118
Principia’s logicism • Gödel’s impact • Another road-map

15 The arithmetization of syntax 124
Gödel numbering • Coding sequences • \(\text{Term, Atom, Wff, Sent and Prf} \) are p.r. • Some cute notation • The idea of diagonalization • What’s next? • The concatenation function • Proving that \(\text{Term} \) is p.r. • Proving that \(\text{Atom and Wff} \) are p.r. • Proving \(\text{Prf} \) is p.r.

16 PA is incomplete 138
Reminders • ‘G is true if and only if it is unprovable’ • PA is incomplete: the semantic argument • ‘G is of Goldbach type’ • Starting the syntactic argument for incompleteness • \(\omega \)-incompleteness, \(\omega \)-inconsistency • Finishing the syntactic argument • ‘Gödel sentences’ and what they say

17 Gödel’s First Theorem 147
Generalizing the semantic argument • Incompletabiliy • Generalizing the syntactic argument • The First Theorem

18 Interlude: About the First Theorem
What we've proved • The reach of Gödelian incompleteness • Some ways to argue that \(G_T \) is true • What doesn't follow from incompleteness • What does follow from incompleteness?

19 Strengthening the First Theorem
Broadening the scope of the incompleteness theorems • True Basic Arithmetic can't be axiomatized • Rosser's improvement • 1-consistency and \(\Sigma_1 \)-soundness

20 The Diagonalization Lemma
Provability predicates • An easy theorem about provability predicates • \(G \) and \(\text{Prov} \) • Proving that \(G \) is equivalent to \(\neg \text{Prov}(\text{"G"}) \) • Deriving the Diagonalization Lemma

21 Using the Diagonalization Lemma
The First Theorem again • An aside: 'Gödel sentences' again • The Gödel-Rosser Theorem again • Capturing provability? • Tarski's Theorem • The Master Argument • The length of proofs

22 Second-order arithmetics
Second-order arithmetical languages • The Induction Axiom • Neat arithmetics • Introducing \(\mathcal{PA}_2 \) • Categoricity • Incompleteness and categoricity • Another arithmetic • Speed-up again

23 Interlude: Incompleteness and Isaacson's conjecture
Taking stock • Goodstein's Theorem • Isaacson's conjecture • Ever upwards • Ancestral arithmetic

24 Gödel's Second Theorem for PA
Defining \(\text{Con} \) • The Formalized First Theorem in \(\mathcal{PA} \) • The Second Theorem for \(\mathcal{PA} \) • On \(\omega \)-incompleteness and \(\omega \)-consistency again • How should we interpret the Second Theorem? • How interesting is the Second Theorem for \(\mathcal{PA} \)? • Proving the consistency of \(\mathcal{PA} \)

25 The derivability conditions
More notation • The Hilbert-Bernays-Löb derivability conditions • \(G, \text{Con} \), and 'Gödel sentences' • Incompletabiliy and consistency extensions • The equivalence of fixed points for \(\neg \text{Prov} \) • Theories that 'prove' their own inconsistency • Löb's Theorem
Contents

26 Deriving the derivability conditions
- Nice* theories
- The second derivability condition
- The third derivability condition
- Useful corollaries
- The Second Theorem for weaker arithmetics
- Jeroslow's Lemma and the Second Theorem

27 Reflections
- The Second Theorem: the story so far
- There are provable consistency sentences
- What does that show?
- The reflection schema: some definitions
- Reflection and PA
- Reflection, more generally
- 'The best and most general version'
- Another route to accepting a Gödel sentence?

28 Interlude: About the Second Theorem
- 'Real' vs 'ideal' mathematics
- A quick aside: Gödel's caution
- Relating the real and the ideal
- Proving real-soundness?
- The impact of Gödel
- Minds and computers
- The rest of this book: another road-map

29 μ-Recursive functions
- Minimization and μ-recursive functions
- Another definition of μ-recursive functions
- The Ackermann-Péter function
- Ackermann-Péter is μ-recursive but not p.r.
- Introducing Church's Thesis
- Why can't we diagonalize out?
- Using Church's Thesis

30 Undecidability and incompleteness
- Q is recursively adequate
- Nice theories can only capture μ-recursive functions
- Some more definitions
- Q and PA are undecidable
- The Entscheidungsproblem
- Incompleteness theorems again
- Negation-complete theories are recursively decidable
- Recursively adequate theories are not recursively decidable
- True Basic Arithmetic is not r.e.

31 Turing machines
- The basic conception
- Turing computation defined more carefully
- Some simple examples
- 'Turing machines' and their 'states'

32 Turing machines and recursiveness
- μ-Recursiveness entails Turing computability
- μ-Recursiveness entails Turing computability: the details
- Turing computability entails μ-recursiveness
- Generalizing

33 Halting problems
- Two simple results about Turing programs
- The halting problem
- The Entscheidungsproblem again
- The halting problem and incompleteness
- Another incompleteness argument
- Kleene's Normal Form Theorem
- Kleene's Theorem entails Gödel's First Theorem