<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-14</td>
<td>Damping and Attenuation 79</td>
</tr>
<tr>
<td>4-15</td>
<td>Corona 79</td>
</tr>
<tr>
<td>4-16</td>
<td>Transmission Line Models for Transient Analysis 81</td>
</tr>
<tr>
<td>4-17</td>
<td>Cable Types 85</td>
</tr>
<tr>
<td></td>
<td>Problems 89</td>
</tr>
<tr>
<td></td>
<td>References 89</td>
</tr>
<tr>
<td></td>
<td>Further Reading 89</td>
</tr>
</tbody>
</table>

Chapter 5 Lightning Strokes, Shielding, and Backflashovers

<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-1</td>
<td>Formation of Clouds 91</td>
</tr>
<tr>
<td>5-2</td>
<td>Lightning Discharge Types 92</td>
</tr>
<tr>
<td>5-3</td>
<td>The Ground Flash 92</td>
</tr>
<tr>
<td>5-4</td>
<td>Lightning Parameters 94</td>
</tr>
<tr>
<td>5-5</td>
<td>Ground Flash Density and Keraunic Level 98</td>
</tr>
<tr>
<td>5-6</td>
<td>Lightning Strikes on Overhead lines 99</td>
</tr>
<tr>
<td>5-7</td>
<td>BIL/CFO of Electrical Equipment 100</td>
</tr>
<tr>
<td>5-8</td>
<td>Frequency of Direct Strokes to Transmission Lines 102</td>
</tr>
<tr>
<td>5-9</td>
<td>Direct Lightning Strokes 104</td>
</tr>
<tr>
<td>5-10</td>
<td>Lightning Strokes to Towers 104</td>
</tr>
<tr>
<td>5-11</td>
<td>Lightning Stroke to Ground Wire 107</td>
</tr>
<tr>
<td>5-12</td>
<td>Strokes to Ground in Vicinity of Transmission Lines 107</td>
</tr>
<tr>
<td>5-13</td>
<td>Shielding 108</td>
</tr>
<tr>
<td>5-14</td>
<td>Shielding Designs 110</td>
</tr>
<tr>
<td>5-15</td>
<td>Backflashovers 113</td>
</tr>
<tr>
<td></td>
<td>Problems 117</td>
</tr>
<tr>
<td></td>
<td>References 121</td>
</tr>
<tr>
<td></td>
<td>Further Reading 121</td>
</tr>
</tbody>
</table>

Chapter 6 Transients of Shunt Capacitor Banks

<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-1</td>
<td>Origin of Switching Transients 123</td>
</tr>
<tr>
<td>6-2</td>
<td>Transients on Energizing a Single Capacitor Bank 123</td>
</tr>
<tr>
<td>6-3</td>
<td>Application of Power Capacitors with Nonlinear Loads 126</td>
</tr>
<tr>
<td>6-4</td>
<td>Back-to-Back Switching 133</td>
</tr>
<tr>
<td>6-5</td>
<td>Switching Devices for Capacitor Banks 134</td>
</tr>
<tr>
<td>6-6</td>
<td>Inrush Current Limiting Reactors 135</td>
</tr>
<tr>
<td>6-7</td>
<td>Discharge Currents Through Parallel Banks 136</td>
</tr>
<tr>
<td>6-8</td>
<td>Secondary Resonance 136</td>
</tr>
<tr>
<td>6-9</td>
<td>Phase-to-Phase Overvoltages 139</td>
</tr>
<tr>
<td>6-10</td>
<td>Capacitor Switching Impact on Drive Systems 140</td>
</tr>
<tr>
<td>6-11</td>
<td>Switching of Capacitors with Motors 140</td>
</tr>
<tr>
<td>6-12</td>
<td>Interruptions of Capacitance Currents 144</td>
</tr>
<tr>
<td>6-13</td>
<td>Control of Switching Transients 147</td>
</tr>
<tr>
<td>6-14</td>
<td>Shunt Capacitor Bank Arrangements 150</td>
</tr>
<tr>
<td></td>
<td>Problems 152</td>
</tr>
<tr>
<td></td>
<td>References 153</td>
</tr>
<tr>
<td></td>
<td>Further Reading 153</td>
</tr>
</tbody>
</table>

Chapter 7 Switching Transients and Temporary Overvoltages

<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-1</td>
<td>Classification of Voltage Stresses 155</td>
</tr>
<tr>
<td>7-2</td>
<td>Maximum System Voltage 155</td>
</tr>
<tr>
<td>7-3</td>
<td>Temporary Overvoltages 156</td>
</tr>
<tr>
<td>7-4</td>
<td>Switching Surges 157</td>
</tr>
<tr>
<td>7-5</td>
<td>Switching Surges and System Voltage 157</td>
</tr>
<tr>
<td>7-6</td>
<td>Closing and Reclosing of Transmission Lines 158</td>
</tr>
<tr>
<td>7-7</td>
<td>Overvoltages Due to Resonance 164</td>
</tr>
<tr>
<td>7-8</td>
<td>Switching Overvoltages of Overhead Lines and Underground Cables 165</td>
</tr>
<tr>
<td>7-9</td>
<td>Cable Models 166</td>
</tr>
<tr>
<td>7-10</td>
<td>Overvoltages Due to Load Rejection 168</td>
</tr>
<tr>
<td>7-11</td>
<td>Ferroresonance 169</td>
</tr>
<tr>
<td>7-12</td>
<td>Compensation of Transmission Lines 169</td>
</tr>
<tr>
<td>7-13</td>
<td>Out-of-Phase Closing 173</td>
</tr>
<tr>
<td>7-14</td>
<td>Overvoltage Control 173</td>
</tr>
<tr>
<td>7-15</td>
<td>Statistical Studies 175</td>
</tr>
<tr>
<td></td>
<td>Problems 179</td>
</tr>
<tr>
<td></td>
<td>References 180</td>
</tr>
<tr>
<td></td>
<td>Further Reading 180</td>
</tr>
</tbody>
</table>

Chapter 8 Current Interruption in AC Circuits

<table>
<thead>
<tr>
<th>Page</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-1</td>
<td>Arc Interruption 181</td>
</tr>
<tr>
<td>8-2</td>
<td>Arc Interruption Theories 182</td>
</tr>
<tr>
<td>8-3</td>
<td>Current-Zero Breaker 182</td>
</tr>
<tr>
<td>8-4</td>
<td>Transient Recovery Voltage 183</td>
</tr>
<tr>
<td>8-5</td>
<td>Single-Frequency TRV Terminal Fault 186</td>
</tr>
<tr>
<td>8-6</td>
<td>Double-Frequency TRV 189</td>
</tr>
<tr>
<td>8-7</td>
<td>ANSI/IEEE Standards for TRV 191</td>
</tr>
<tr>
<td>8-8</td>
<td>IEC TRV Profiles 193</td>
</tr>
<tr>
<td>8-9</td>
<td>Short-Line Fault 195</td>
</tr>
<tr>
<td>8-10</td>
<td>Interruption of Low Inductive Currents 197</td>
</tr>
<tr>
<td>8-11</td>
<td>Interruption of Capacitive Currents 200</td>
</tr>
<tr>
<td>8-12</td>
<td>Prestrikes in Circuit Breakers 200</td>
</tr>
<tr>
<td>8-13</td>
<td>Breakdown in Gases 200</td>
</tr>
</tbody>
</table>
13-6 Building Blocks of Excitation Systems 339
13-7 Saturation Characteristics of Exciter 340
13-8 Types of Excitation Systems 343
13-9 Power System Stabilizers 352
13-10 Tuning a PSS 355
13-11 Models of Prime Movers 358
13-12 Automatic Generation Control 358
13-13 On-Line Security Assessments 361
Problems 362
References 362
Further Reading 363

Chapter 14 Transient Behavior of Transformers
14-1 Frequency-Dependent Models 365
14-2 Model of a Two-Winding Transformer 365
14-3 Equivalent Circuits for Tap Changing 367
14-4 Inrush Current Transients 368
14-5 Transient Voltages Impacts on Transformers 368
14-6 Matrix Representations 371
14-7 Extended Models of Transformers 373
14-8 EMTP Model FDBIT 380
14-9 Sympathetic Inrush 382
14-10 High-Frequency Models 383
14-11 Surge Transference Through Transformers 384
14-12 Surge Voltage Distribution Across Windings 389
14-13 Duality Models 389
14-14 GIC Models 391
14-15 Ferroresonance 391
14-16 Transformer Reliability 394
Problems 395
References 396
Further Reading 396

Chapter 15 Power Electronic Equipment and FACTS
15-1 The Three-Phase Bridge Circuits 397
15-2 Voltage Source Three-Phase Bridge 401
15-3 Three-Level Converter 402
15-4 Static VAR Compensator (SVC) 405
15-5 Series Capacitors 408
15-6 FACTS 414
15-7 Synchronous Voltage Source 414
15-8 Static Synchronous Compensator 415
15-9 Static Series Synchronous Compensator 416
15-10 Unified Power Flow Controller 419
15-11 NGH-SSR Damper 422
15-12 Displacement Power Factor 423
15-13 Instantaneous Power Theory 424
15-14 Active Filters 425
Problems 425
References 426
Further Reading 426

Chapter 16 Flicker, Bus Transfer, Torsional Dynamics, and Other Transients
16-1 Flicker 429
16-2 Autotransfer of Loads 432
16-3 Static Transfer Switches and Solid-State Breakers 438
16-4 Cogging and Crawling of Induction Motors 439
16-5 Synchronous Motor-Driven Reciprocating Compressors 441
16-6 Torsional Dynamics 446
16-7 Out-of-Phase Synchronization 449
Problems 451
References 451
Further Reading 452

Chapter 17 Insulation Coordination
17-1 Insulating Materials 453
17-2 Atmospheric Effects and Pollution 453
17-3 Dielectrics 455
17-4 Insulation Breakdown 456
17-5 Insulation Characteristics—BIL and BSL 459
17-6 Volt-Time Characteristics 461
17-7 Nonstandard Wave Forms 461
17-8 Probabilistic Concepts 462
17-9 Minimum Time to Breakdown 465
17-10 Weibull Probability Distribution 465
17-11 Air Clearances 465
17-12 Insulation Coordination 466
17-13 Representation of Slow Front Overvoltages (SFOV) 469
17-14 Risk of Failure 470
17-15 Coordination for Fast-Front Surges 472
17-16 Switching Surge Flashover Rate 473
17-17 Open Breaker Position 474
22-7 Internal LPS Systems According to IEC 594
22-8 Lightning Protection According to NFPA Standard 780 594
22-9 Lightning Risk Assessment According to NFPA 780 595
22-10 Protection of Ordinary Structures 596
22-11 NFPA Rolling Sphere Model 597
22-12 Alternate Lightning Protection Technologies 598
22-13 Is EMF Harmful to Humans? 602

Problems 602
References 603
Further Reading 603

Chapter 23 DC Systems, Short Circuits, Distributions, and HVDC

23-1 Short-Circuit Transients 605
23-2 Current Interruption in DC Circuits 615
23-3 DC Industrial and Commercial Distribution Systems 617
23-4 HVDC Transmission 618

Problems 627
References 628
Further Reading 629

Chapter 24 Smart Grids and Wind Power Generation

24-1 WAMS and Phasor Measurement Devices 631
24-2 System Integrity Protection Schemes 632
24-3 Adaptive Protection 633
24-4 Wind-Power Stations 634
24-5 Wind-Energy Conversion 635
24-6 The Cube Law 636
24-7 Operation 638
24-8 Wind Generators 639
24-9 Power Electronics 640
24-10 Computer Modeling 642
24-11 Floating Wind Turbines 645

References 645
Further Reading 645

Appendix A Differential Equations

A-1 Homogeneous Differential Equations 647
A-2 Linear Differential Equations 648
A-3 Bernoulli’s Equation 648
A-4 Exact Differential Equations 648

A-5 Clairaut’s Equation 649
A-6 Complementary Function and Particular Integral 649
A-7 Forced and Free Response 649
A-8 Linear Differential Equations of the Second Order (With Constant Coefficients) 650
A-9 Calculation of Complementary Function 650
A-10 Higher-Order Equations 651
A-11 Calculations of Particular Integrals 651
A-12 Solved Examples 653
A-13 Homogeneous Linear Differential Equations 654
A-14 Simultaneous Differential Equations 655
A-15 Partial Differential Equations 655

Further Reading 658

Appendix B Laplace Transform

B-1 Method of Partial Fractions 659
B-2 Laplace Transform of a Derivative of f(t) 661
B-3 Laplace Transform of an Integral 661
B-4 Laplace Transform of tf(t) 662
B-5 Laplace Transform of (1/t) f(t) 662
B-6 Initial-Value Theorem 662
B-7 Final-Value Theorem 662
B-8 Solution of Differential Equations 662
B-9 Solution of Simultaneous Differential Equations 662
B-10 Unit-Step Function 663
B-11 Impulse Function 663
B-12 Gate Function 663
B-13 Second Shifting Theorem 663
B-14 Periodic Functions 665
B-15 Convolution Theorem 666
B-16 Inverse Laplace Transform by Residue Method 666
B-17 Correspondence with Fourier Transform 667

Further Reading 667

Appendix C z-Transform

C-1 Properties of z-Transform 670
C-2 Initial-Value Theorem 671
C-3 Final-Value Theorem 672
C-4 Partial Sum 672
C-5 Convolution 672
C-6 Inverse z-Transform 672
C-7 Inversion by Partial Fractions 674
C-8 Inversion by Residue Method 674
APPENDIX F STATISTICS AND PROBABILITY
F-1 Mean, Mode, and Median 695
F-2 Mean and Standard Deviation 695
F-3 Skewness and Kurtosis 696
F-4 Curve Fitting and Regression 696
F-5 Probability 698
F-6 Binomial Distribution 699
F-7 Poisson Distribution 699
F-8 Normal or Gaussian Distribution 699
F-9 Weibull Distribution 701
Reference 702
Further Reading 702

APPENDIX G NUMERICAL TECHNIQUES
G-1 Network Equations 703
G-2 Compensation Methods 703
G-3 Nonlinear Inductance 704
G-4 Piecewise Linear Inductance 704
G-5 Newton-Raphson Method 704
G-6 Numerical Solution of Linear Differential Equations 706
G-7 Laplace Transform 706
G-8 Taylor Series 706
G-9 Trapezoidal Rule of Integration 706
G-10 Runge-Kutta Methods 707
G-11 Predictor-Corrector Methods 708
G-12 Richardson Extrapolation and Romberg Integration 708
References 709
Further Reading 709

Index 711