Direct-Detection LADAR Systems

Richard D. Richmond
Stephen C. Cain

Tutorial Texts in Optical Engineering
Volume TT85

SPIE PRESS
Bellingham, Washington USA
Contents

Preface xi
Mathematical Notation xiii

Chapter 1 Introduction to LADAR Systems 1
1.1 Background 1
1.2 LADAR and RADAR Fundamentals 1
 1.2.1 Heterodyne versus direct detection 7
1.3 LADAR Range Equation 8
 1.3.1 Laser transmitter models 8
 1.3.2 Atmospheric transmission 10
 1.3.3 Target reflectivity and angular dispersion 11
 1.3.4 Dispersion upon reflection 12
 1.3.5 LADAR receiver throughput and efficiency 14
1.4 Types of LADAR Systems and Applications 14
 1.4.1 Three-dimensional-imaging LADAR systems 15
1.5 Sources of Noise in LADAR Systems 15
 1.5.1 Photon counting noise 16
 1.5.2 Laser speckle noise 16
 1.5.3 Thermal noise 18
 1.5.4 Background noise 18
1.6 LADAR Systems and Models 19
 1.6.1 Computational model for the range equation and
 signal-to-noise ratio (SNR) 19
 1.6.2 Avalanche photodiode 24
1.7 Problems 25

Chapter 2 LADAR Waveform Models 27
2.1 Fourier Transform 27
 2.1.1 Properties of the DFT 28
 2.1.1.1 Periodicity of the DFT 29
 2.1.1.2 Time-shift property of the DFT 29
 2.1.1.3 Convolution property of the DFT 29
 2.1.2 Transforms of some useful functions 30
 2.1.2.1 Transform of a Gaussian function 30
 2.1.2.2 DFT of a rectangular shape 30
Chapter 3 Wave Propagation Models
3.1 Rayleigh-Sommerfeld Propagation
3.2 Free-Space Propagation
3.3 Atmospheric Turbulence Phase Screen Simulation
3.4 LADAR System Point Spread Function
3.5 Problems

Chapter 4 Detection and Estimation Theory Applied to LADAR
4.1 Simple Binary Hypothesis Testing
4.2 Decision Criteria
4.3 Detection Methods Using Waveform Data
4.4 Receiver Operating Characteristics
4.5 Range Estimation
4.5.1 Peak estimator
4.5.2 Cross-correlation range estimator
4.5.3 Leading-edge detectors
4.6 Range Resolution and Range Accuracy
4.7 Problems

Chapter 5 LADAR Imaging Systems
5.1 Single-Pixel Scanning Imagers
5.2 Gated Viewing Imagers
5.2.1 Design and modeling considerations
5.3 Staring or FLASH Imagers
5.4 Modeling 2D and 3D FLASH LADAR Systems
5.5 Speckle Mitigation for Imaging LADAR Systems

References
Index