Progress of the EPOS project: Gamma-induced Positron Spectroscopy (GiPS)
(Reinhard Krause-Rehberg, Wolfgang Anwand, Gerhard Brauer, Maik Butterling,
Tom Cowan, Andreas Hartmann, Marco Jungmann, Arnold Krille,
Ronald Schwengner, and Andreas Wagner, p. 2451)

With contributions from the
15th International Conference on Positron Annihilation (ICPA-15)

Guest Editor: Bichitra Nandi Ganguly
The GiPS facility (Gamma-induced Positron Spectroscopy) has been set up for user operation at the Research Center Dresden-Rossendorf, Germany, in 2009. A bunched electron beam from a superconducting linear accelerator (LINAC) in cw mode (bunch length < 5 ps; repetition time 38 ns) generates bremsstrahlung photons up to 20 MeV. The photon beam hits the sample and positrons are generated by pair production in the whole sample volume. All important positron techniques are applied to study the real structure of bulky samples (coarse powder, samples for non-destructive testing, liquids, activated samples). Due to the unique time structure, positron lifetime and AMOC (Age-Momentum Correlation) measurements are possible. Coincidence Doppler Broadening Spectroscopy (CDBS) is also available. The spectra of all techniques were proven to exhibit extraordinary quality, as is reported by Reinhard Krause-Rehberg et al. on p. 2451 ff.

Positron annihilation, as a well-established experimental tool in the materials science community, provides unique information about the behavior of the material microstructure after radiation treatment. The experimental simulation of radiation damage by charged particle implantation is, as a first approach, a very reasonable way to study radiation embrittlement. The article presented by Vladimir Krsjek et al. on p. 2339 ff. discusses this timely topic on recent experiments on helium implanted Fe–Cr model alloys. Simultaneous results from positron beam and conventional depth profiled positron lifetime techniques are demonstrated. In the cover picture, the intensity of the positron lifetime component \(I_4 \) characterizes the presence of large open volume defects.
Obituaries

John A. Wheeler’s lessons to an undergraduate student

Page 2260–2261 M. Ashraf Alam
In memory of Dr. Maurizio Biasini

Memoir

Page 2262–2264 G. Amarendra
Slow positron moderator studies at Brandeis – Collaborative work with Karl F. Canter

Positron scattering

Page 2265–2271 J. A. Young and C. M. Surko (plenary)
Positron attachment to molecules

Page 2272–2276 Sadhan K. Adhikari (invited)
Positronium interaction and its Bose–Einstein condensation

Page 2277–2280 Tapas Mukherjee and Nirmal K. Sarkar
Positron hydrogen molecule scattering under Ro-vibrational LFCC scheme using PCOP potential below the electronic excitation threshold

Page 2281–2284 Hasi Ray
Ionization of positronium (Ps) in collision with atom

Metals and alloys

Page 2285–2290 R. Rajaraman, G. Amarendra, and C. S. Sundar (plenary)
Defect evolution in steels: Insights from positron studies

Page 2291–2294 Yasuyuki Nagashima, Toshihide Hakodate, Ayaka Miyamoto, Koji Michishio, and Hiroki Terabe (invited)
Emission of positronium negative ions from Cs deposited W(100) and polycrystalline Fe surfaces

Page 2295–2300 A. Somoza, A. Dupasquier, and R. Ferragut (invited)
Advances in positron studies of age hardening in light alloys

Page 2301–2303 A. Dupasquier, R. Ferragut, P. Liddicoat, F. Moia, and S. P. Ringer
Positron lifetime evolution during room temperature ageing in Al–Zn–Mg–(Cu)

Positron annihilation studies of defects in Si$_{1-x}$Ge/SOI heterostructures

Positron annihilation studies on 9Cr reduced activation ferritic/martensitic steels
<table>
<thead>
<tr>
<th>Page</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2310-2312</td>
<td>L. Toniutti, R. Checchetto, P. Mengucci, A. Miotello, and R. S. Brusa</td>
<td>Hydrogen sorption kinetics in Nb doped Mg: role of Nb clustering and open volume defects formation</td>
</tr>
<tr>
<td>2313-2315</td>
<td>Wolfgang Lechner, Werner Puff, Roland Würschum, Gerhard Wilde, Michael J. Zehetbauer, and Reinhard Pippan</td>
<td>Positron annihilation studies of HPT deformed aluminium alloys</td>
</tr>
<tr>
<td>2316-2318</td>
<td>T. Troev, P. Staikov, E. Popov, N. Nankov, K. Sato, and T. Yoshiie</td>
<td>Positron studies of defects in palladium containing hydrogen</td>
</tr>
<tr>
<td>2322-2325</td>
<td>C. Macchi, A. Somoza, R. Ferragut, A. Dupasquier, and I. J. Polmear</td>
<td>Ageing processes in Al–Cu–Mg alloys with different Cu/Mg ratios</td>
</tr>
<tr>
<td>2326-2328</td>
<td>Jerzy Kansy, Aneta Hanc, Lucjan Pają, and Dawid Giebel</td>
<td>PALS study of point defects in Fe–Al and Fe–Al–Cr alloys</td>
</tr>
<tr>
<td>2329-2332</td>
<td>P. E. Lhuiller, M. F. Barthe, P. Desgardin, W. Egger, and P. Sperr</td>
<td>Positron annihilation studies on the nature and thermal behaviour of irradiation induced defects in tungsten</td>
</tr>
<tr>
<td>2333-2335</td>
<td>Toshimasa Yoshiie, Xingzhong Cao, Qiu Xu, Koichi Sato, and T. D. Troev</td>
<td>Damage structures in austenitic stainless steels during incubation period of void swelling</td>
</tr>
<tr>
<td>2336-2338</td>
<td>Qiu Xu, Xingzhong Cao, Koichi Sato, Toshimasa Yoshiie, and Takeo Iwai</td>
<td>He bubble formation and emission of He in irradiated Fe</td>
</tr>
<tr>
<td>2339-2341</td>
<td>Vladimír Kršjak, Vladimir Slugen, Martin Petriska, Stanislav Sojak, and Werner Egger</td>
<td>Microstructural study of He-implanted Fe–Cr alloys with the use of conventional lifetime technique and pulsed low energy positron beam</td>
</tr>
<tr>
<td>2342-2345</td>
<td>Vladimir Slugen, Vladimír Kršjak, Martin Petriska, Stanislav Sojak, and Jana Veterníková</td>
<td>Microstructural study of high irradiated reactor steels</td>
</tr>
<tr>
<td>2346-2348</td>
<td>Stanislav Sojak, Vladimír Kršjak, Vladimír Slugeň, Martin Petriska, and Jana Veterníková</td>
<td>PALS investigation of chromium effect in ferritic/martensitic steels implanted with helium</td>
</tr>
<tr>
<td>2349-2351</td>
<td>Emad A. Badawi, M. A. Abdel-Rahman, and M. S. Abdallah</td>
<td>Thermal vacancies and self-diffusion energy in 2024 Al-alloy by positron annihilation lifetime technique</td>
</tr>
<tr>
<td>2355-2358</td>
<td>Xingzhong Cao, Qiu Xu, Koichi Sato, and Toshimasa Yoshiie</td>
<td>Migration behavior of vacancies in electron irradiated Fe–Cu alloys</td>
</tr>
</tbody>
</table>
Page 2359-2363
M. Abdel-Rahman
Detecting thermal defects in age hardening Al-6063 alloys by positron annihilation Doppler broadening technique

Page 2364-2366
Jakub Cizek, Ivan Prochazka, Oksana Melikhova, Martin Vlach, Nada Zaludova, Gerhard Brauer, Wolfgang Anwand, Werner Egger, Peter Sperr, Christoph Hugenschmidt, Ryota Gemma, Astrid Pundt, and Reiner Kirchheim
Hydrogen-induced defects in Pd films

Page 2367-2369
Oksana Melikhova, Jakub Cizek, Ivan Prochazka, Jan Kuriplach, Frantisek Lukac, Miroslav Cieslar, Gerhard Brauer, and Wolfgang Anwand
Quenched-in vacancies in Fe–Al alloys

Page 2370-2372
Study on secondary phase precipitate behavior in Zircaloy-2 by positron annihilation spectroscopy

Page 2373-2375
T. Troev, E. Popov, P. Staikov, and N. Nankov
Positron lifetime studies of defects in α-Fe containing helium

Positron source
Page 2376-2379
Malay Kanti Dey and Rakesh Kumar Bhandari (invited)
Setting up a 30 MeV high current cyclotron facility in Kolkata

Page 2380-2383
Jerzy Dryzek
Positron source based on the 48V isotope dedicated to positron lifetime spectroscopy

Page 2384-2386
Positron source Ge-68 through copper and bronze irradiated by carbon ions

Polymers
Page 2387-2391
Victor Shantarovich, Vadim Gustov, Aleksandra Polyakova, Eleonora Belousova, Mikhail Filimonov, and Yuri Yampolskii (invited)
Positron annihilation lifetime data and actual porosity of polymers

Page 2392-2396
Hamdy F. M. Mohamed, Y. Kobayashi, C. S. Kuroda, and A. Ohira (invited)
Positron annihilation study of ion-exchanged forms of Nafion® membrane

Page 2397-2400
H. M. Chen, Y. C. Jean, L. James Lee, Jintao Yang, and James Huang
Positron annihilation study in inorganic-polymer nano-composites

Page 2401-2403
Abdullah M. A. M. Altaweel, H. B. Ravikumar, and C. Ranganathaiah
Influence of free volume on the mechanical properties of epoxy based composites: A correlation study

Page 2404-2406
J. M. Raj, G. N. Kumarswamy, and C. Ranganathaiah
Interfacial stabilization of binary polymer blends through radiation treatment: A free volume approach
Contents

Page 2407–2410 M. N. Chandrashekara and C. Ranganathaiah
A study of dye molecule diffusion in human hair using positron lifetime spectroscopy

Page 2411–2413 M. V. Deepa Urs and C. Ranganathaiah
Spoliation of a rigid gas permeable contact lens by sodium chloride: A free volume microprobe study

Page 2414–2416 Ramasubbu Ramani, Sami Valkama, Simo Kilpeläinen, Filip Tumisto, Gerrit ten Brinke, Janne Ruokolainen, Sarfaraz Alam, and Olli Ikkala
Order-disorder transitions in self-assembled polymers: A positron annihilation study

Microstructural study of supported liquid membranes using slow positron beam

Page 2420–2422 E. E. Abdel-Hady, Hamdy F. M. Mohamed, and M. R. M. El-Sharkawy
Temperature effect on free volume of polymethylpentene studied by positron annihilation technique

Page 2423–2425 Sebastián Tognana, Walter Salgueiro, and Alberto Somoza
On the cure process in an epoxy-anhydride system

Page 2426–2428 Sebastián Tognana, Walter Salgueiro, and Alberto Somoza
Influence of the cure temperature and the accelerator content on the free volume in a DGEBA epoxy-anhydride-imidazole system

Positron annihilation studies on chalcone chromophore doped PVA

Investigation of the free volume in olanzapine by PALS

Page 2435–2437 S. Asad Ali, Rajesh Kumar, P. M. G. Nambissan, Fouran Singh, and Rajendra Prasad
o-Ps lifetime, free volume and Doppler broadening spectroscopy (DBS) studies of 50 MeV Li^{3+} ion irradiated polystyrene

Page 2438–2441 V. Ravindrachary, R. F. Bhajantri, A. Harisha, Ismayil, and C. Ranganathaiah
Microstructure and positron behavior in FeCl_{3} doped PVA/PVP blend

Page 2442–2444 Rajendra Prasad, Rajesh Kumar, P. M. G. Nambissan, Fouran Singh, and S. Asad Ali
Li^{3+} ion irradiation effects on polyamide nylon6,6 studied by positron annihilation lifetime and Doppler broadening spectroscopy

Page 2445–2447 Radosław Zaleski, Jacek Goworek, and Małgorzata Maciejewska
Positronium lifetime in porous VP–DVB copolymer

Page 2448–2450 Rajesh Kumar and Rajendra Prasad
Nano scale free volume study of 70 MeV carbon C^{5+} ion induced modification in Makrofol-KL polycarbonate by positron annihilation

WWW.pss-C.com © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Experimental techniques

Page 2451-2455

Reinhard Krause-Rehberg, Wolfgang Anwand, Gerhard Brauer, Maik Butterling, Tom Cowan, Andreas Hartmann, Marco Jungmann, Arnold Krille, Ronald Schwengner, and Andreas Wagner (plenary)

Progress of the EPOS project:
Gamma-induced Positron Spectroscopy (GiPS)

Page 2456-2458

M. Bajpai, L. T. Lachhvani, and Y. C. Saxena

Paul trap for pure positron plasma –
A prelude to electron–positron plasma in a laboratory

Page 2459-2461

C. Hugenschmidt, P. Pikart, and K. Schreckenbach (invited)

Coincident Doppler-broadening spectroscopy of Si, amorphous SiO₂, and α-quartz using mono-energetic positrons

Page 2462-2464

Patrice Perez, Laszlo Liszkay, Jean-Michel Rey, Valentin Bideanu, Mickael Carty, Aline Curtoni, Olivier Delferriere, Pierre Dupré, Tomoko Muranaka, Nicolas Ruiz, and Yves Sacquin

A mini linac based positron source

Page 2465-2467

Martin Petriska, Andrej Zeman, Vladimir Slugeň, Vladimir Kršjak, Stanislav Sojak, and Luigi Debarberis

Application of fast-digitizer card Acqiris DP-240 in positron lifetime spectroscopy

Page 2468-2470

J. Mayer, K. Schreckenbach, and C. Hugenschmidt

Recent development of the PAES set up at NEPOMUC

Page 2471-2475

Masao Doyama, Yoshiaki Kogure, Miyoshi Inoue, Toshikazu Kurihara, Y. Miyake, Kusuo Nishiyama, Koichiro Shimomura, Toshisada Yoshiie, Yoshihiko Hayashi, Q. Xu, Xingzhong Cao, M. Matsuya, and M. Fujinami (invited)

Transmission positron microscopes, application of imaging plates to positron, electron and muon research and a proposal for a strong positron source at J-PARC

Liquids

Page 2476-2481

Sergey V. Stepanov, Vsevolod M. Byakov, Gilles Duplâtre, Dmitriy S. Zvezhinskiy, and Yuri V. Lomachuk (invited)

Positronium formation in a liquid phase:
Influence of intratrack reactions and temperature

Page 2482-2486

K. Chandramani Singh (invited)

On the study of liquid crystalline materials using positron annihilation spectroscopy

Page 2487-2489

Philip Pikart, Christoph Hugenschmidt, and Klaus Schreckenbach

Doppler-broadening (DB) measurement of ionic liquids using a monoenergetic positron beam

Page 2490-2492

K. Chandramani Singh, R. Yadav, M. Sharma, and P. C. Jain

Study of molecular motions in liquid crystal forming compounds using positron lifetime spectroscopy
<table>
<thead>
<tr>
<th>Page</th>
<th>Authors</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2497–2502</td>
<td>Toshio Hyodo, Takashi Nakayama, Haruo Saito, Fuminori Saito, and Ken Wada (plenary)</td>
<td>The quenching of ortho-positronium</td>
</tr>
<tr>
<td>2503–2506</td>
<td>Vsevolod M. Byakov, Sergey V. Stepanov, and Olga P. Stepanova (invited)</td>
<td>PAL spectroscopy and testing for potential carcinogens</td>
</tr>
<tr>
<td>2507–2509</td>
<td>Fuminori Saito, Kotaro Saito, and Toshio Hyodo</td>
<td>Development of a method to investigate interactions between positronium and the surface of fine particles</td>
</tr>
<tr>
<td>2510–2512</td>
<td>Ken Wada, Fuminori Saito, and Toshio Hyodo</td>
<td>A new method to measure the ortho-positronium quenching rate in low vapor-pressure gases</td>
</tr>
<tr>
<td>2519–2522</td>
<td>S. Abhaya and G. Amarendra (invited)</td>
<td>Positron annihilation studies on bulk cobalt silicides</td>
</tr>
<tr>
<td>2523–2525</td>
<td>B. Barbiellini and P. M. Platzman (invited)</td>
<td>The positronium state in quartz</td>
</tr>
<tr>
<td>2526–2529</td>
<td>A. Sarkar, S. Chattopadhyay, and Udayan De</td>
<td>Electrical resistivity peculiarities and positron lifetime in annealed CdO</td>
</tr>
<tr>
<td>2530–2532</td>
<td>Anna Rubaszek</td>
<td>Non-local electron–positron correlation effects for SiC</td>
</tr>
<tr>
<td>2533–2536</td>
<td>Soubhik Chattopadhyay, Sreetama Dutta, Debnarayan Jana, Sanjay Chattopadhyay, Debabrata Das, Mahuya Chakrabarti, Dirtha Sanyal, and Anindya Sarkar</td>
<td>Defects dynamics in annealed Si₃N₄ by positron annihilation spectroscopy</td>
</tr>
<tr>
<td>2537–2539</td>
<td>Simo Kilpeläinen, Katja Kuutinen, Jonatan Slotte, Filip Tuomisto, Gaël Borot, Laurent Rubaldo, L. Clément, Roland Pantel, and Didier Dutartre</td>
<td>Defect characterization of heavily As and P doped Si epilayers</td>
</tr>
</tbody>
</table>
Contents

Influence of 3γ-annihilation events on o-Ps lifetime and intensities in mesoporous materials

Page 2549–2551 S. Mariazzi, A. Salemi, and R. S. Brusa
Dependence of ortho-positronium pick-off rate on sample temperature

Page 2552–2555 K. Sudarshan, P. N. Patil, A. Goswami, K. T. Pillai, and P. K. Pujari
Positronium chemistry of the Ps quenchers adsorbed on to the mesoporous resin

Nano materials

Page 2556–2560 Gerhard Brauer, Wolfgang Anwand, Dieter Grambole, Werner Egger, Peter Sperr, Igor Beinik, Lin Wang, Christian Teichert, Jan Kuiriplach, Jan Lang, Sergei Zviagin, Erik Cizmar, Chi Chung Ling, Yuk Fan Hsu, Yan Yan Xi, Xinyi Chen, Aleksandra B. Djurišić, and Wolfgang Skorupa
Characterization of ZnO nanostructures: A challenge to positron annihilation spectroscopy and other methods

Page 2561–2565 S. W. H. Eijt (invited)
Meeting challenges in nanomaterials for sustainable energy applications using high-resolution positron methods

Positron annihilation spectroscopy in nanocrystallized iron based metallic glass

Page 2569–2571 Soumen Das, Tandra Ghoshal, and P. M. G. Nambissan
Positron annihilation studies of NiO nanoparticles prepared through two different chemical routes

Page 2572–2574 B. Roy, B. Karmakar, M. Pal, and P. M. G. Nambissan
Mn doping in ZnO nanoparticles: effects investigated by positron lifetime and Doppler broadening studies

Effect of growth conditions on vacancy defects in MOVPE grown AlN thin layers

Multi-wall carbon nanotubes investigated by positron annihilation techniques and microscopies for further production handling

Sintering of yttria-stabilized zirconia nanopowders studied by positron annihilation spectroscopy

Page 2585–2588 C. Macchi, A. Somoza, S. Mariazzi, R. S. Brusa, C. Vericat, M. E. Vela, and R. C. Salvarezza
Characterization of high area nanostructured gold surfaces by slow positron depth profiling
Study of iron phthalocyanine organic semiconductor thin films using slow positron beam

A partial summary on ICPA-15

Most accessed articles in September 2009

Carbon nanotubes: physics and applications

Calculation of the external quantum efficiency of light emitting diodes with different chip designs

Defects in Ce⁺⁺ doped Y₂SiO₅

FTIR Measurements of Thickness and Free Carrier Concentration in GaN-Based Films

Structural and optical properties of ZnO nanowires synthesized with different catalysts and substrate pre-treatments

Electrical and optical characterization of n-type ZnO thin films

The properties of surface textured ZnO:AI films for thin film solar cells

Optical properties of multilayered Alq₃/α-NPD structures investigated with spectroscopic ellipsometry

Cone-shaped surface GaN-based light-emitting diodes