Nanomedicine Design of Particles, Sensors, Motors, Implants, Robots, and Devices

Mark J. Schulz
Vesselin N. Shanov
Yeoheung Yun

Editors
CONTENTS

Preface xvii
Outline of the Book xix

CHAPTER 1
A Nanotechnology Framework for Medical Innovation 1
1.1 Introduction 1
1.2 Descriptive Systems Modeling 2
1.2.1 Examples of Descriptive Systems Modeling 3
1.3 Instrumentation Needed to Develop DSM 4
1.4 Nanomaterials Made for Medicine 6
1.5 Implantable Nanomedical Devices 8
1.6 Nanorobots 10
1.6.1 Nanorobots for Revolutionizing Medicine 12
1.6.2 Nanorobot Factory 16
1.6.3 Biological Nanorobots 17
1.7 Biodegradable Metals for Temporary Implantable Nanomedical Devices 17
1.8 Integration of Nanodevices in the Body 18
1.9 Safety and Ethical Implications of Nanomedicine 19
1.10 Efficiently Working Together Using Shared Resources 20
1.11 Chapter Summary and Conclusions 21

Problems 22
Acknowledgments 22
References 22

PART 1
Nanoscale Materials and Particles 25

CHAPTER 2
Synthesis of Carbon Nanotube Materials for Biomedical Applications 27
2.1 Introduction to Nanoscale Materials 27
2.2 Synthesis of Long Carbon Nanotube Arrays 29
2.3 Characterization of CNT Arrays 31
2.3.1 Scanning Electron Microscopy and Transmission Electron Microscopy 31
2.3.2 Raman Spectroscopy and Thermal Gravimetric Analysis 31
2.4 Patterned CNT Arrays 32
2.5 Production Scale Up of CNT Arrays at UC 32
2.5.1 Magnetron Sputtering for Substrate Preparation 32
2.6 Spinning Carbon Nanotubes into Thread
 2.6.1 Mechanics of Array Spinning
 2.6.2 Direct Spinning of Thread from Long CNT Arrays
 2.6.3 Catalyst and Substrates for Growing of Spinable CNT Arrays
 2.6.4 Spinning Thread from DWCNT Arrays
 2.6.5 Pulling Ribbon from CNT Arrays
 2.6.6 Post-Treatment of the CNT Thread

2.7 Mechanical and Electrical Characterization of CNT Thread
 2.7.1 Tensile Testing of CNT Thread
 2.7.2 Electrical Properties of CNT Thread
 2.7.3 Temperature Dependence of the CNT Thread Resistance
 2.7.4 Electrical Properties of CNT Ribbon

2.8 Nano-Handling of CNTs Using a Nanomanipulator Inside an ESEM
 2.8.1 Instrumentation
 2.8.2 Handling CNT Bundles
 2.8.3 Building Nanomedical Devices Using the Nanomanipulator

2.9 Carbon Nanotube Threads in Wireless, Biomedical Sensor Applications
 2.9.1 Wireless Communication and the Modern World
 2.9.2 Development of CNT Thread-Based Antenna at UC
 2.9.3 Future Medical Application of the CNT Thread Antenna

2.10 Applications of CNT Materials in Nanomedicine
 2.10.1 Carbon Nanotube Array Immunosensor
 2.10.2 Carbon Nanotube Actuators
 2.10.3 Carbon Nanotube Materials as Scaffolds for Supporting Directional Neurite Growth

2.11 Summary and Conclusions

Problems
Acknowledgments
References

CHAPTER 3
Functionalized Carbon Nanotubes as Multimodal Drug Delivery Systems for Targeted Cancer Therapy

3.1 Introduction to Targeted Cancer Therapy
 3.1.1 Cancer Statistics
 3.1.2 Present-Day Cancer Treatment and Associated Problems
 3.1.3 A Brief Insight into Targeting Strategies

3.2 Carbon Nanotubes: A Versatile Material
 3.2.1 Definition and Synthesis of Carbon Nanotubes
 3.2.2 Characterization of Carbon Nanotubes
 3.2.3 Purification of Carbon Nanotubes
 3.2.4 Functionalization of Carbon Nanotubes for Biomedical Applications

3.3 Carbon Nanotubes as Nanovehicles for Multimodal Drug Delivery
 3.3.1 Carbon Nanotube Drug Delivery Systems Based on Surface Functionalization
5.5 Combination of Lithography and Self-Assembly to Construct 3-D Devices 140
 5.5.1 Three-Dimensional Self-Assembled Containers 140
 5.5.2 Multilayer Thin Film Stress for 3-D Self Assembly 145
 5.5.3 Three-Dimensional Constructs for Cell Culture 145
 5.5.4 Microscale Tetherless Gripper (Chemically Triggered Microsurgical Tools) 147

5.6 Conclusions 148
5.7 Future Directions 148
Problems 148
Acknowledgments 150
References 150
Selected Bibliography 155

CHAPTER 6
Nanosized Magnetite for Biomedical Applications 157
6.1 Introduction 157
6.2 Crystalline Structure 158
 6.2.1 Bulk Magnetite 158
 6.2.2 Structural Characteristics of Nanoparticles 160
6.3 Nanosized Magnetism 163
 6.3.1 Multidomain and Monodomain Particles: Superparamagnetism 163
 6.3.2 Experimental Data 171
6.4 Magnetic Particles and Biomedical Applications 175
 6.4.1 Magnetite and Bioworld 175
 6.4.2 Biomedical Applications of Magnetic Single-Domain Particles 177
6.5 Conclusions 183
Problems 185
References 185

CHAPTER 7
Progress in the Use of Aligned Carbon Nanotubes to Support Neuronal Attachment and Directional Neurite Growth 189
7.1 Background 189
 7.1.1 CNS Regeneration Occurs Under Some Conditions 189
 7.1.2 Factors That Inhibit or Stimulate Axonal Regeneration 190
 7.1.3 The Geometry Hypothesis 190
 7.1.4 Artificial Substrates Can Promote Axonal Regeneration 192
 7.1.5 Carbon Nanotubes and Axonal Regeneration 193
 7.1.6 Aligned Carbon Nanotubes as a Potential Scaffold for Axonal Regeneration 194
 7.1.7 CNT Cytotoxicity 195
7.2 Recent Progress 195
 7.2.1 Preparation of CNTs 196
 7.2.2 Neuronal Cultures 196
CHAPTER 11
Microcantilever Biomedical Sensors
11.1 The Microcantilever Platform
11.2 Value of Biosensors in Cancer Diagnostics and Prognostication
11.3 Cantilever Preparation
11.4 Biomolecular Detection Assays
11.4.1 Detection of PSA
11.5 Implantable Sensors
11.6 Conclusion
Problems
References

CHAPTER 12
Nanoimaging and In-Body Nanostructured Devices for Diagnostics and Therapeutics
12.1 Introduction
12.2 Technology for In Vivo Sensing
12.2.1 Atomic Force Microscopy for Multimodal and Multidimensional Imaging
12.2.2 Nanoimaging, Nanosensing and Intermolecular Interactions
12.2.3 Parallel Arrays of Sensors to Detect Complementary Interactions
12.3 In-Body Nanosensors and Nanodevices
12.3.1 Edema Sensor
12.3.2 Remote Controlled, Magnetically Navigated Robot Capsule
12.3.3 Mobile Microscopic Robots
12.4 Conclusions
Problems
References

CHAPTER 13
Microfabricated Devices for Detecting Circulating Tumor Cells in Cancer Patient Blood Samples
13.1 Clinical Challenge
13.2 Technical Challenge
13.3 Techniques for Detecting CTC in Blood
13.3.1 Cell Enrichment Methods
13.3.2 Microfabricated Devices
13.4 Clinical Value of CTC Capture and Characterization
13.5 Cancer Stem Cells and Metastasis
13.6 Application of Nanotechnology in CTC Capture 358
13.7 Conclusion 359
Problems 359
References 360

PART III
Tiny Machines 365

CHAPTER 14
Medical Nanorobotics: The Long-Term Goal for Nanomedicine 367
14.1 Introduction 367
14.2 From Nanoparticles to Nanorobots 368
14.3 Diamondoid Materials in Nanorobotics 371
14.4 Early Steps Toward Diamondoid Molecular Manufacturing 373
14.5 Massive Parallelism Enables Practical Molecular Manufacturing 378
14.6 Examples of Diamondoid Medical Nanorobots 379
14.7 An Ideal Nanorobotic Pharmaceutical Delivery Vehicle 382
14.8 Conclusion 387
Problems 387
References 388

CHAPTER 15
Potential Strategies for Advanced Nanomedical Device Ingress and Egress, Natation, Mobility, and Navigation 393
15.1 Introduction 393
15.2 Potential Nanodevice Ingress Strategies 394
15.2.1 Hypodermic Injection and Dermal Burrowing 394
15.2.2 Aerosol Inhalation and Traversing the Blood/Brain Barrier (BBB) 396
15.2.3 Transdermal Patch, Diffusive Gel, or Eye/Ear Drops 397
15.3 Molecular Motors 398
15.3.1 Powering Molecular Motors 399
15.3.2 Piezoelectric Elements 399
15.3.3 Molecular Propellers 399
15.4 Constraints on Molecular Motors 400
15.4.1 Brownian Motion 401
15.4.2 Brownian Shuttles 402
15.4.3 Viscous Forces 402
15.5 Traversing the Circulatory System 403
15.5.1 Whole Blood Composition and Viscosity 403
15.6 Traversing the Lymphatic System 406
15.7 Phagocyte Avoidance Strategies 406
15.8 Nanometric Biomimetic Analogs for Potential Nanomedical Device Motility and Ambulatory Movement 407
15.8.1 Cilia and Flagella 408
15.8.2 Myosin and Actin 410
15.8.3 Kinesin and Dynein 410
15.9 Nanodevice Aqueous Motility
 15.9.1 Biomimetic Flagellar Propulsion Using Nanotubes 411
 15.9.2 Nanoscale Earthworm Analog 412
 15.9.3 External Magnetic Propulsion 412
 15.9.4 Ultrasonic Peristaltic Propulsion 412
 15.9.5 Nanofluidic Channels: Behavior and Potential for Propulsion 413
15.10 Ambulatory Nanomedical Devices 413
 15.10.1 DNA Robot 414
 15.10.2 Nanowalker 415
15.11 Hypothetical Concept for Clinically Localized GPS Navigation
 Applied to Advanced Autonomous Nanomedical Devices 415
15.12 Nanodevice Egress Strategies 416
15.13 Conclusion 417
 Problems 417
 References 418

CHAPTER 16
Nanoscale Mechanics for Medicine 423
16.1 Introduction 423
16.2 Nanoinjection and Nanotube Biocompatibility 423
 16.2.1 Nanoinjection 423
 16.2.2 Nanotube Biocompatibility 424
16.3 Nanometer Propulsion 426
 16.3.1 Rotational Nanomotors 426
 16.3.2 Linear Nanomotors 427
 16.3.3 Surface-Tension-Driven Nanomotors 429
16.4 Nanomechanical Radios and Sensors 430
 16.4.1 Nanotube Radio Receiver 430
 16.4.2 Nanotube Radio Transmitter 433
 16.4.3 Nanomechanical Mass Sensing 434
 Problems 436
 Acknowledgments 436
 References 436

PART IV
Biological Integration and Characterization 439

CHAPTER 17
Integration of Manmade Nanostructures with Biological Systems:
Diagnosis of Cancer Using Semiconductor Quantum-Dot Biomolecule
Complexes 441
17.1 Introduction 441
17.2 Semiconductor Quantum Dots and Their Adaptation for
 Nanodiagnostics 442
17.3 Semiconductor Quantum Dots as Applied to the Study of
 Cellular Properties 447
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.4</td>
<td>Semiconductor-Quantum-Dots—Biomolecule Complexes Used</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>in the Study of Carcinogenic Cells and in Cancer Diagnosis</td>
<td></td>
</tr>
<tr>
<td>17.5</td>
<td>Conclusion</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>454</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>454</td>
</tr>
</tbody>
</table>

CHAPTER 18

Two-Photon Microscopy for In Vivo Analysis of Neural and Secretory Activities

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1</td>
<td>The Need for Noninvasive Imaging</td>
<td>459</td>
</tr>
<tr>
<td>18.2</td>
<td>Features of Two-Photon Excited Fluorescence Microscopy</td>
<td>460</td>
</tr>
<tr>
<td>18.2.1</td>
<td>Deep and Benign Observations</td>
<td>462</td>
</tr>
<tr>
<td>18.2.2</td>
<td>Replacement for Ultraviolet Sources</td>
<td>463</td>
</tr>
<tr>
<td>18.2.3</td>
<td>Avoiding Self-Shielding Effects and Compensating for Photobleaching</td>
<td>464</td>
</tr>
<tr>
<td>18.2.4</td>
<td>Precise, Simultaneous Multicolor Fluorescence Imaging</td>
<td>464</td>
</tr>
<tr>
<td>18.3</td>
<td>Overview of the Optical System</td>
<td>465</td>
</tr>
<tr>
<td>18.4</td>
<td>In Vivo Imaging of the Cerebral Neocortex</td>
<td>467</td>
</tr>
<tr>
<td>18.5</td>
<td>Imaging of Secretory Functions</td>
<td>469</td>
</tr>
<tr>
<td>18.6</td>
<td>Future Possibilities</td>
<td>470</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>472</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>472</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>472</td>
</tr>
</tbody>
</table>

CHAPTER 19

Nanoscale Engineering of Electrodes, Biosensors, and Protein Surfaces

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19.1</td>
<td>Introduction</td>
<td>475</td>
</tr>
<tr>
<td>19.2</td>
<td>Carbon Nanotube Electrode and Biosensor Development</td>
<td>476</td>
</tr>
<tr>
<td>19.2.1</td>
<td>Carbon Nanotube Array Synthesis</td>
<td>476</td>
</tr>
<tr>
<td>19.2.2</td>
<td>Carbon Nanotube Array Electrode</td>
<td>476</td>
</tr>
<tr>
<td>19.2.3</td>
<td>Individual Carbon Nanotube Electrode</td>
<td>479</td>
</tr>
<tr>
<td>19.2.4</td>
<td>Carbon Nanotube Array Biosensor</td>
<td>480</td>
</tr>
<tr>
<td>19.2.5</td>
<td>Initial Development of a CNT Array Electrode for Prostate Cancer Cell Detection</td>
<td>481</td>
</tr>
<tr>
<td>19.3</td>
<td>New Polymer Synthesis for High Throughput Experimental Design</td>
<td>484</td>
</tr>
<tr>
<td>19.3.1</td>
<td>Biophotoreist Synthesis</td>
<td>484</td>
</tr>
<tr>
<td>19.3.2</td>
<td>Photolithography for Protein Patterning</td>
<td>485</td>
</tr>
<tr>
<td>19.3.3</td>
<td>Protein Patterning</td>
<td>486</td>
</tr>
<tr>
<td>19.4</td>
<td>Summary and Conclusions</td>
<td>487</td>
</tr>
<tr>
<td></td>
<td>Problems</td>
<td>487</td>
</tr>
<tr>
<td></td>
<td>Acknowledgments</td>
<td>487</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>488</td>
</tr>
</tbody>
</table>

About the Editors: List of Contributors

Index