Colloid Science
Principles, methods
and applications

Second Edition

Edited by
TERENCE COSGROVE
School of Chemistry, University of Bristol,
Bristol, UK
Contents

Preface xv
Introduction xvii
Acknowledgements xix
List of Contributors xxi

1 An Introduction to Colloids 1
Roy Hughes

1.1 Introduction 1
1.2 Basic Definitions 5
 1.2.1 Concentration 5
 1.2.2 Interfacial Area 10
 1.2.3 Effective Concentrations 11
 1.2.4 Average Separation 12
1.3 Stability 14
 1.3.1 Quiescent Systems 15
 1.3.2 Sedimentation or Creaming 16
 1.3.3 Shearing Flows 17
 1.3.4 Other Forms of Instability 17
1.4 Colloid Frontiers 18
References 20

2 Charge in Colloidal Systems 23
David Fermin and Jason Riley

2.1 Introduction 23
2.2 The Origin of Surface Charge 24
 2.2.1 Ionisation of Surface Groups 24
 2.2.2 Ion Adsorption 25
 2.2.3 Dissolution of Ionic Solids 25
 2.2.4 Isomorphous Substitution 25
 2.2.5 Potential Determining Ions 25
2.3 The Electrochemical Double Layer 26
 2.3.1 The Stern–Gouy–Chapman (SGC) Model of the Double Layer 26
 2.3.2 The Double Layer at the Hg/Electrolyte Interface 30
 2.3.3 Specific Adsorption 34
 2.3.4 Interparticle Forces 36
2.4 Electrokinetic Properties
 2.4.1 Electrolyte Flow 36
 2.4.2 Streaming Potential Measurements 37
 2.4.3 Electro-osmosis 38
 2.4.4 Electrophoresis 39
 2.4.5 Electroacoustic Technique 42

References 42

3 Stability of Charge-stabilised Colloids 45
John Eastman

3.1 Introduction 45
3.2 The Colloidal Pair Potential 46
 3.2.1 Attractive Forces 46
 3.2.2 Electrostatic Repulsion 47
 3.2.3 Effect of Particle Concentration 49
 3.2.4 Total Potential 50
3.3 Criteria for Stability 51
 3.3.1 Salt Concentration 51
 3.3.2 Counter-ion Valency 52
 3.3.3 Zeta Potential 54
 3.3.4 Particle Size 54
3.4 Kinetics of Coagulation 55
 3.4.1 Diffusion-limited Rapid Coagulation 55
 3.4.2 Interaction-limited Coagulation 56
 3.4.3 Experimental Determination of c.c.c. 57
3.5 Conclusions 58
References 59

4 Surfactant Aggregation and Adsorption at Interfaces 61
Julian Eastoe

4.1 Introduction 61
4.2 Characteristic Features of Surfactants 61
4.3 Classification and Applications of Surfactants 62
 4.3.1 Types of Surfactants 62
 4.3.2 Surfactant Uses and Development 64
4.4 Adsorption of Surfactants at Interfaces 66
 4.4.1 Surface Tension and Surface Activity 66
 4.4.2 Surface Excess and Thermodynamics of Adsorption 67
 4.4.3 Efficiency and Effectiveness of Surfactant Adsorption 71
4.5 Surfactant Solubility 73
 4.5.1 The Krafft Temperature 73
 4.5.2 The Cloud Point 74
4.6 Micellisation 75
 4.6.1 Thermodynamics of Micellisation 75
4.6.2 Factors Affecting the CMC 78
4.6.3 Structure of Micelles and Molecular Packing 80
4.7 Liquid Crystalline Mesophases 82
 4.7.1 Definition 82
 4.7.2 Structures 83
 4.7.3 Phase Diagrams 86
4.8 Advanced Surfactants 87
References 88

5 Microemulsions
Julian Eastoe 91

5.1 Introduction 91
5.2 Microemulsions: Definition and History 91
5.3 Theory of Formation and Stability 93
 5.3.1 Interfacial Tension in Microemulsions 93
 5.3.2 Kinetic Instability 95
5.4 Physicochemical Properties 95
 5.4.1 Predicting Microemulsion Type 95
 5.4.2 Surfactant Film Properties 101
 5.4.3 Phase Behaviour 107
5.5 Developments and Applications 110
 5.5.1 Microemulsions with Green and Novel Solvents 110
 5.5.2 Microemulsions as Reaction Media for Nanoparticles 113
References 114

6 Emulsions
Brian Vincent 117

6.1 Introduction 117
 6.1.1 Definitions of Emulsion Type 117
 6.1.2 Novel Features of Emulsion Systems, Compared to Solid/Liquid Dispersions 120
6.2 Preparation 120
 6.2.1 Comminution – Batch 120
 6.2.2 Comminution – Continuous 124
 6.2.3 Nucleation and Growth 124
6.3 Stability 126
 6.3.1 Introduction 126
 6.3.2 Sedimentation and Creaming 126
 6.3.3 Aggregation 127
 6.3.4 Coalescence 128
 6.3.5 Ostwald Ripening 130
 6.3.6 Phase Inversion 131
References 133
7 Polymers and Polymer Solutions

Terence Cosgrove

7.1 Introduction
7.2 Polymerisation
 7.2.1 Condensation
 7.2.2 Free Radical
 7.2.3 Ionic Methods
7.3 Copolymers
7.4 Polymer Physical Properties
 7.4.1 Entanglements
7.5 Polymer Uses
7.6 Theoretical Models of Polymer Structure
 7.6.1 Radius of Gyration
 7.6.2 Worm-like Chains
 7.6.3 Radius of Gyration in Ideal Solution
 7.6.4 Excluded Volume
 7.6.5 Scaling Theory: Blobs
 7.6.6 Polyelectrolytes
7.7 Measuring Polymer Molecular Weight
 7.7.1 Viscosity
7.8 Flory-Huggins Theory
 7.8.1 Polymer Solutions
 7.8.2 Polymer Melts
 7.8.3 Copolymers
References

8 Polymers at Interfaces

Terence Cosgrove

8.1 Introduction
 8.1.1 Steric Stability
 8.1.2 The Size and Shape of Polymers in Solution
 8.1.3 Adsorption of Small Molecules
8.2 Adsorption of Polymers
 8.2.1 Configurational Entropy
 8.2.2 The Flory Surface Parameter χ_s
8.3 Models and Simulations for Terminally Attached Chains
 8.3.1 Atomistic Modelling
 8.3.2 Exact Enumeration: Terminally Attached Chains
 8.3.3 Approximate Methods: Terminally Attached Chains
 8.3.4 Scaling Models for Terminally Attached Chains (Brushes)
 8.3.5 Physically Adsorbed Chains: Scheutjens and Fleer Theory
 8.3.6 Scaling Theory for Physical Adsorption
8.4 Experimental Aspects
 8.4.1 Volume Fraction Profiles
 8.4.2 Adsorption Isotherms
9 Effect of Polymers on Colloid Stability
Jeroen van Duijneveldt

9.1 Introduction 181
9.1.1 Colloid Stability 181
9.1.2 Limitations of Charge Stabilisation 182
9.1.3 Effect of Polymers on Interactions 182
9.2 Particle Interaction Potential 182
9.2.1 Measuring Surface Forces 183
9.3 Steric Stabilisation 183
9.3.1 Theory 183
9.3.2 Steric Stabiliser Design 186
9.3.3 Marginal Solvents 187
9.4 Depletion Interactions 189
9.5 Bridging Interactions 192
9.6 Conclusion 193
References 194

10 Wetting of Surfaces
Paul Reynolds

10.1 Introduction 197
10.2 Surfaces and Definitions 198
10.3 Surface Tension 198
10.4 Surface Energy 199
10.5 Contact Angles 199
10.6 Wetting 200
10.7 Liquid Spreading and Spreading Coefficients 202
10.8 Cohesion and Adhesion 203
10.9 Two Liquids on a Surface 204
10.10 Detergency 207
10.11 Spreading of a Liquid on a Liquid 207
10.12 Characterisation of a Solid Surface 210
10.13 Polar and Dispersive Components 210
10.14 Polar Materials 211
10.15 Wettability Envelopes 212
10.16 Measurement Methods 214
10.17 Conclusions 216
References 216
11 Aerosols
Nana-Owusua A. Kwamena and Jonathan P. Reid

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.1 Introduction</td>
<td>219</td>
</tr>
<tr>
<td>11.2 Generating and Sampling Aerosols</td>
<td>222</td>
</tr>
<tr>
<td>11.2.1 Generating Aerosols</td>
<td>222</td>
</tr>
<tr>
<td>11.2.2 Sampling Aerosol</td>
<td>224</td>
</tr>
<tr>
<td>11.3 Determining the Particle Concentration and Size</td>
<td>225</td>
</tr>
<tr>
<td>11.3.1 Determining the Number Concentration</td>
<td>226</td>
</tr>
<tr>
<td>11.3.2 Determining the Mass Concentration</td>
<td>226</td>
</tr>
<tr>
<td>11.3.3 Determining Particle Size</td>
<td>227</td>
</tr>
<tr>
<td>11.4 Determining Particle Composition</td>
<td>230</td>
</tr>
<tr>
<td>11.4.1 Off-line Analysis</td>
<td>230</td>
</tr>
<tr>
<td>11.4.2 Real-time Analysis</td>
<td>231</td>
</tr>
<tr>
<td>11.5 The Equilibrium State of Aerosols</td>
<td>234</td>
</tr>
<tr>
<td>11.5.1 Deliquescence and Efflorescence</td>
<td>234</td>
</tr>
<tr>
<td>11.5.2 Köhler Theory</td>
<td>235</td>
</tr>
<tr>
<td>11.5.3 Measurements of Hygroscopic Growth</td>
<td>237</td>
</tr>
<tr>
<td>11.5.4 Other Phases</td>
<td>238</td>
</tr>
<tr>
<td>11.6 The Kinetics of Aerosol Transformation</td>
<td>238</td>
</tr>
<tr>
<td>11.6.1 Steady and Unsteady Mass and Heat Transfer</td>
<td>239</td>
</tr>
<tr>
<td>11.6.2 Uptake of Trace Species and Heterogeneous Chemistry</td>
<td>240</td>
</tr>
<tr>
<td>11.7 Concluding Remarks</td>
<td>242</td>
</tr>
<tr>
<td>References</td>
<td>242</td>
</tr>
</tbody>
</table>

12 Practical Rheology
Roy Hughes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>245</td>
</tr>
<tr>
<td>12.2 Making Measurements</td>
<td>245</td>
</tr>
<tr>
<td>12.2.1 Definitions</td>
<td>246</td>
</tr>
<tr>
<td>12.2.2 Designing an Experiment</td>
<td>248</td>
</tr>
<tr>
<td>12.2.3 Geometries</td>
<td>250</td>
</tr>
<tr>
<td>12.2.4 Viscometry</td>
<td>252</td>
</tr>
<tr>
<td>12.2.5 Shear Thinning and Thickening Behaviour</td>
<td>254</td>
</tr>
<tr>
<td>12.3 Rheometry and Viscoelasticity</td>
<td>256</td>
</tr>
<tr>
<td>12.3.1 Viscoelasticity and Deborah Number</td>
<td>256</td>
</tr>
<tr>
<td>12.3.2 Oscillation and Linearity</td>
<td>257</td>
</tr>
<tr>
<td>12.3.3 Creep Compliance</td>
<td>258</td>
</tr>
<tr>
<td>12.3.4 Liquid and Solid Behaviour</td>
<td>259</td>
</tr>
<tr>
<td>12.3.5 Sedimentation and Storage Stability</td>
<td>261</td>
</tr>
<tr>
<td>12.4 Examples of Soft Materials</td>
<td>263</td>
</tr>
<tr>
<td>12.4.1 Simple Particles and Polymers</td>
<td>264</td>
</tr>
<tr>
<td>12.4.2 Networks and Functionalisation</td>
<td>267</td>
</tr>
<tr>
<td>12.4.3 Polymeric Additives</td>
<td>268</td>
</tr>
<tr>
<td>12.4.4 Particle Additives</td>
<td>268</td>
</tr>
<tr>
<td>12.5 Summary</td>
<td>271</td>
</tr>
<tr>
<td>References</td>
<td>272</td>
</tr>
</tbody>
</table>
13 Scattering and Reflection Techniques

Robert Richardson

13.1 Introduction 273
13.2 The Principle of a Scattering Experiment 274
13.3 Radiation for Scattering Experiments 275
13.4 Light Scattering 276
13.5 Dynamic Light Scattering 278
13.6 Small Angle Scattering 279
13.7 Sources of Radiation 279
13.8 Small Angle Scattering Apparatus 280
13.9 Scattering and Absorption by Atoms 282
13.10 Scattering Length Density 283
13.11 Small Angle Scattering from a Dispersion 284
13.12 Form Factor for Spherical Particles 285
13.13 Determining Particle Size from SANS and SAXS 285
13.14 Guinier Plots to Determine Radius of Gyration 286
13.15 Determination of Particle Shape 286
13.16 Polydispersity 287
13.17 Determination of Particle Size Distribution 288
13.18 Alignment of Anisotropic Particles 289
13.19 Concentrated Dispersions 289
13.20 Contrast Variation Using SANS 290
13.21 High Q Limit: Porod Law 292
13.22 Introduction to X-Ray and Neutron Reflection 294
13.23 Reflection Experiment 295
13.24 A Simple Example of a Reflection Measurement 295
13.25 Conclusion 297

References 297

14 Optical Manipulation

Paul Bartlett

14.1 Introduction 299
14.2 Manipulating Matter with Light 299
14.3 Force Generation in Optical Tweezers 302
14.4 Nanofabrication 304
14.5 Single Particle Dynamics 305
14.5.1 Measuring Nanometer Displacements 305
14.5.2 Brownian Fluctuations in an Optical Trap 306
14.5.3 Dynamical Complexity in Colloidal Gels 307
14.6 Conclusions 308

References 308

15 Electron Microscopy

Sean Davis

15.1 General Features of (Electron) Optical Imaging Systems 311
15.2 Conventional TEM
 15.2.1 Background
 15.2.2 Practical Aspects
 15.2.3 Polymer Latex Particles
 15.2.4 Core/Shell Particles
 15.2.5 Internal Structure
15.3 Conventional SEM
 15.3.1 Background
 15.3.2 Types of Signal
 15.3.3 Practical Aspects
15.4 Summary

References

16 Surface Forces
 Wuge Briscoe

16.1 Introduction
 16.1.1 Intermolecular Forces
 16.1.2 From Intermolecular Forces to Surface Forces
 16.1.3 Why Measure Surface Forces?
16.2 Forces and Energy; Size and Shape
 16.2.1 Pressure, Force and Energy
 16.2.2 The Derjaguin Approximation
16.3 Surface Force Measurement Techniques
 16.3.1 Optical Tweezers
 16.3.2 Total Internal Reflection Microscopy (TIRM)
 16.3.3 Atomic Force Microscope (AFM)
 16.3.4 Surface Force Apparatus (SFA)
 16.3.5 Other Techniques
16.4 Different Types of Surface Forces
 16.4.1 van der Waals Forces
 16.4.2 Electric Double Layer Forces in a Polar Liquid
 16.4.3 The DLVO Theory
 16.4.4 Non-DLVO Forces
 16.4.5 Neutral Polymer-mediated Surface Forces
 16.4.6 Surface Forces in Surfactant Solutions
16.5 Recent Examples of Surface Force Measurement
 16.5.1 Counter-ion Only (CIO) Electric Double Layer Interactions in a Non-polar Liquid
 16.5.2 Interactions Between Surface-grown Biomimetic Polymer Brushes in Aqueous Media
 16.5.3 Boundary Lubrication Under Water
16.6 Future Challenges

References

Index