Statistical Signal Processing of Complex-Valued Data

The Theory of Improper and Noncircular Signals

PETER J. SCHREIER
University of Newcastle, New South Wales, Australia

LOUIS L. SCHARF
Colorado State University, Colorado, USA
Contents

Preface
Notation

Part I Introduction

1. **The origins and uses of complex signals**
 - 1.1 Cartesian, polar, and complex representations of two-dimensional signals
 - 1.2 Simple harmonic oscillator and phasors
 - 1.3 Lissajous figures, ellipses, and electromagnetic polarization
 - 1.4 Complex modulation, the Hilbert transform, and complex analytic signals
 - 1.4.1 Complex modulation using the complex envelope
 - 1.4.2 The Hilbert transform, phase splitter, and analytic signal
 - 1.4.3 Complex demodulation
 - 1.4.4 Bedrosian’s theorem: the Hilbert transform of a product
 - 1.4.5 Instantaneous amplitude, frequency, and phase
 - 1.4.6 Hilbert transform and SSB modulation
 - 1.4.7 Passband filtering at baseband
 - 1.5 Complex signals for the efficient use of the FFT
 - 1.5.1 Complex DFT
 - 1.5.2 Twofer: two real DFTs from one complex DFT
 - 1.5.3 Twofer: one real 2N-DFT from one complex N-DFT
 - 1.6 The bivariate Gaussian distribution and its complex representation
 - 1.6.1 Bivariate Gaussian distribution
 - 1.6.2 Complex representation of the bivariate Gaussian distribution
 - 1.6.3 Polar coordinates and marginal pdfs
 - 1.7 Second-order analysis of the polarization ellipse
 - 1.8 Mathematical framework
 - 1.9 A brief survey of applications

2. **Introduction to complex random vectors and processes**
 - 2.1 Connection between real and complex descriptions
 - 2.1.1 Widely linear transformations
 - 2.1.2 Inner products and quadratic forms
2.2 Second-order statistical properties
 2.2.1 Extending definitions from the real to the complex domain
 2.2.2 Characterization of augmented covariance matrices
 2.2.3 Power and entropy
2.3 Probability distributions and densities
 2.3.1 Complex Gaussian distribution
 2.3.2 Conditional complex Gaussian distribution
 2.3.3 Scalar complex Gaussian distribution
 2.3.4 Complex elliptical distribution
2.4 Sufficient statistics and ML estimators for covariances:
 complex Wishart distribution
2.5 Characteristic function and higher-order statistical description
 2.5.1 Characteristic functions of Gaussian and elliptical distributions
 2.5.2 Higher-order moments
 2.5.3 Cumulant-generating function
 2.5.4 Circularity
2.6 Complex random processes
 2.6.1 Wide-sense stationary processes
 2.6.2 Widely linear shift-invariant filtering
Notes

Part II Complex random vectors

3 Second-order description of complex random vectors

3.1 Eigenvalue decomposition
 3.1.1 Principal components
 3.1.2 Rank reduction and transform coding
3.2 Circularity coefficients
 3.2.1 Entropy
 3.2.2 Strong uncorrelating transform (SUT)
 3.2.3 Characterization of complementary covariance matrices
3.3 Degree of impropriety
 3.3.1 Upper and lower bounds
 3.3.2 Eigenvalue spread of the augmented covariance matrix
 3.3.3 Maximally improper vectors
3.4 Testing for impropriety
3.5 Independent component analysis
Notes

4 Correlation analysis

4.1 Foundations for measuring multivariate association between two complex random vectors
 4.1.1 Rotational, reflectional, and total correlations for complex scalars
4.1.2 Principle of multivariate correlation analysis
4.1.3 Rotational, reflectional, and total correlations for complex vectors
4.1.4 Transformations into latent variables
4.2 Invariance properties
4.2.1 Canonical correlations
4.2.2 Multivariate linear regression (half-canonical correlations)
4.2.3 Partial least squares
4.3 Correlation coefficients for complex vectors
4.3.1 Canonical correlations
4.3.2 Multivariate linear regression (half-canonical correlations)
4.3.3 Partial least squares
4.4 Correlation spread
4.5 Testing for correlation structure
4.5.1 Sphericity
4.5.2 Independence within one data set
4.5.3 Independence between two data sets
Notes

5 Estimation

5.1 Hilbert-space geometry of second-order random variables
5.2 Minimum mean-squared error estimation
5.3 Linear MMSE estimation
5.3.1 The signal-plus-noise channel model
5.3.2 The measurement-plus-error channel model
5.3.3 Filtering models
5.3.4 Nonzero means
5.3.5 Concentration ellipsoids
5.3.6 Special cases
5.4 Widely linear MMSE estimation
5.4.1 Special cases
5.4.2 Performance comparison between LMMSE and WLMMSE estimation
5.5 Reduced-rank widely linear estimation
5.5.1 Minimize mean-squared error (min-trace problem)
5.5.2 Maximize mutual information (min-det problem)
5.6 Linear and widely linear minimum-variance distortionless response estimators
5.6.1 Rank-one LMVDR receiver
5.6.2 Generalized sidelobe canceler
5.6.3 Multi-rank LMVDR receiver
5.6.4 Subspace identification for beamforming and spectrum analysis
5.6.5 Extension to WLMVDR receiver
5.7 Widely linear-quadratic estimation
5.7.1 Connection between real and complex quadratic forms 145
5.7.2 WLQMMSE estimation 146
Notes 149

6 Performance bounds for parameter estimation 151

6.1 Frequentists and Bayesians 152
 6.1.1 Bias, error covariance, and mean-squared error 154
 6.1.2 Connection between frequentist and Bayesian approaches 155
 6.1.3 Extension to augmented errors 157
6.2 Quadratic frequentist bounds 157
 6.2.1 The virtual two-channel experiment and the quadratic frequentist bound 157
 6.2.2 Projection-operator and integral-operator representations of quadratic frequentist bounds 159
 6.2.3 Extension of the quadratic frequentist bound to improper errors and scores 161
6.3 Fisher score and the Cramér–Rao bound 162
 6.3.1 Nuisance parameters 164
 6.3.2 The Cramér–Rao bound in the proper multivariate Gaussian model 164
 6.3.3 The separable linear statistical model and the geometry of the Cramér–Rao bound 165
 6.3.4 Extension of Fisher score and the Cramér–Rao bound to improper errors and scores 167
 6.3.5 The Cramér–Rao bound in the improper multivariate Gaussian model 168
 6.3.6 Fisher score and Cramér–Rao bounds for functions of parameters 169
6.4 Quadratic Bayesian bounds 170
6.5 Fisher–Bayes score and Fisher–Bayes bound 171
 6.5.1 Fisher–Bayes score and information 172
 6.5.2 Fisher–Bayes bound 173
6.6 Connections and orderings among bounds 174
Notes 175

7 Detection 177

7.1 Binary hypothesis testing 178
 7.1.1 The Neyman–Pearson lemma 179
 7.1.2 Bayes detectors 180
 7.1.3 Adaptive Neyman–Pearson and empirical Bayes detectors 180
7.2 Sufficiency and invariance 180
7.3 Receiver operating characteristic 181
7.4 Simple hypothesis testing in the improper Gaussian model 183
7.4.1 Uncommon means and common covariance 183
7.4.2 Common mean and uncommon covariances 185
7.4.3 Comparison between linear and widely linear detection 186
7.5 Composite hypothesis testing and the Karlin–Rubin theorem 188
7.6 Invariance in hypothesis testing 189
7.6.1 Matched subspace detector 190
7.6.2 CFAR matched subspace detector 193
Notes 194

Part III Complex random processes 195

8 Wide-sense stationary processes 197
8.1 Spectral representation and power spectral density 197
8.2 Filtering 200
8.2.1 Analytic and complex baseband signals 201
8.2.2 Noncausal Wiener filter 202
8.3 Causal Wiener filter 203
8.3.1 Spectral factorization 203
8.3.2 Causal synthesis, analysis, and Wiener filters 205
8.4 Rotary-component and polarization analysis 205
8.4.1 Rotary components 206
8.4.2 Rotary components of random signals 208
8.4.3 Polarization and coherence 211
8.4.4 Stokes and Jones vectors 213
8.4.5 Joint analysis of two signals 215
8.5 Higher-order spectra 216
8.5.1 Moment spectra and principal domains 217
8.5.2 Analytic signals 218
Notes 221

9 Nonstationary processes 223
9.1 Karhunen–Loève expansion 224
9.1.1 Estimation 227
9.1.2 Detection 230
9.2 Cramér–Loève spectral representation 230
9.2.1 Four-corners diagram 231
9.2.2 Energy and power spectral densities 233
9.2.3 Analytic signals 235
9.2.4 Discrete-time signals 236
9.3 Rihaczek time–frequency representation 237
9.3.1 Interpretation 238
9.3.2 Kernel estimators 240
9.4 Rotary-component and polarization analysis 242
9.4.1 Ellipse properties 244
9.4.2 Analytic signals 245
9.5 Higher-order statistics 247
Notes 248

10 Cyclostationary processes 250
10.1 Characterization and spectral properties 251
10.1.1 Cyclic power spectral density 251
10.1.2 Cyclic spectral coherence 253
10.1.3 Estimating the cyclic power-spectral density 254
10.2 Linearly modulated digital communication signals 255
10.2.1 Symbol-rate-related cyclostationarity 255
10.2.2 Carrier-frequency-related cyclostationarity 258
10.2.3 Cyclostationarity as frequency diversity 259
10.3 Cyclic Wiener filter 260
10.4 Causal filter-bank implementation of the cyclic Wiener filter 262
10.4.1 Connection between scalar CS and vector WSS processes 262
10.4.2 Sliding-window filter bank 264
10.4.3 Equivalence to FRESH filtering 265
10.4.4 Causal approximation 267
Notes 268

Appendix 1 Rudiments of matrix analysis 270
A1.1 Matrix factorizations 270
A1.1.1 Partitioned matrices 270
A1.1.2 Eigenvalue decomposition 270
A1.1.3 Singular value decomposition 271
A1.2 Positive definite matrices 272
A1.2.1 Matrix square root and Cholesky decomposition 272
A1.2.2 Updating the Cholesky factors of a Grammian matrix 272
A1.2.3 Partial ordering 273
A1.2.4 Inequalities 274
A1.3 Matrix inverses 274
A1.3.1 Partitioned matrices 274
A1.3.2 Moore–Penrose pseudo-inverse 275
A1.3.3 Projections 276

Appendix 2 Complex differential calculus (Wirtinger calculus) 277
A2.1 Complex gradients 278
A2.1.1 Holomorphic functions 279
A2.1.2 Complex gradients and Jacobians 280
A2.1.3 Properties of Wirtinger derivatives 281
<table>
<thead>
<tr>
<th>Appendix 3</th>
<th>Introduction to majorization</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3.1 Basic definitions</td>
<td>288</td>
</tr>
<tr>
<td>A3.1.1 Majorization</td>
<td>288</td>
</tr>
<tr>
<td>A3.1.2 Schur-convex functions</td>
<td>289</td>
</tr>
<tr>
<td>A3.2 Tests for Schur-convexity</td>
<td>290</td>
</tr>
<tr>
<td>A3.2.1 Specialized tests</td>
<td>291</td>
</tr>
<tr>
<td>A3.2.2 Functions defined on \mathcal{D}</td>
<td>292</td>
</tr>
<tr>
<td>A3.3 Eigenvalues and singular values</td>
<td>293</td>
</tr>
<tr>
<td>A3.3.1 Diagonal elements and eigenvalues</td>
<td>293</td>
</tr>
<tr>
<td>A3.3.2 Diagonal elements and singular values</td>
<td>294</td>
</tr>
<tr>
<td>A3.3.3 Partitioned matrices</td>
<td>295</td>
</tr>
</tbody>
</table>

References 296

Index 305