Practical Digital Wireless Signals

EARL McCUNE
Contents

Preface
Definitions and acronyms
Terminology and notation

1 Keying, states, and block diagram construction

1.1 Radio communications: what really happens? 2
1.2 Modulation states: "keyed" 3
1.3 DWC signal representations 6
 1.3.1 "Digital" modulations of an analog signal 6
 1.3.2 Polar representation 6
 1.3.3 Quadrature representation 7
 1.3.4 Transformations between signal representations 9
1.4 Frequency domain representations 11
1.5 Implementing a DWC system 13
 1.5.1 Symbol construction 13
 1.5.2 Symbol-to-signal-state mapping 14
 1.5.3 State transitions 15
 1.5.4 Modulator 17
 1.5.5 Power amplifier (PA) 17
 1.5.6 Radio front-end 18
 Simplex 18
 Duplex 19
 Duplexer vs. diplexer 20

References 22
For further reading 22

2 Common issues and signal characterization

2.1 Power spectral density (PSD) 23
2.2 Occupied bandwidth 28
 2.2.1 Useful signal-bandwidth measures 29
 Bounded power-spectral-density (B-PSD) bandwidth 29
 Fractional power-containment bandwidth 31
 Transmitter mask 33
2.2.2 Bad signal-bandwidth measures
 Null-to-null bandwidth 33
 Equivalent white-noise signal bandwidth (ENSB) 34

2.3 Bandlimiting filtering
 2.3.1 Exact vs. good enough 37
 2.3.2 Filtering pulses 37
 Full response 38
 Partial response 38
 2.3.3 Superposition 38
 2.3.4 Intersymbol interference (ISI) 40
 2.3.5 Nyquist filters 40
 2.3.6 Matched filtering 43

2.4 Informational diagrams
 2.4.1 Constellation diagram 47
 2.4.2 Vector diagram 48
 2.4.3 "Eye" diagram 48

2.5 Interference and near-far interference (NFI) 50

2.6 Signals and noise
 2.6.1 Signal-to-noise ratio (SNR) 53
 2.6.2 Carrier-to-noise ratio (CNR) 53
 2.6.3 Information bit-energy-to-noise-density (IBEND) E_b/N_0 53

2.7 Channel (Shannon) capacity 56

2.8 Important DWC signal measures
 2.8.1 Efficiency measures 58
 Bandwidth efficiency 58
 Energy (DC) efficiency 59
 Output efficiency 61
 Peak efficiency 61
 Backoff efficiency 61
 Supply-referenced efficiency 62
 Power-added efficiency 63
 Overall transmitter efficiency 63
 Power efficiency 63
 2.8.2 Error vector 65
 2.8.3 Off-channel power ratio 66
 2.8.4 Envelope dynamics 67
 Signal power 67
 Peak-to-average power ratio (PAPR) 67
 PDF/CDF/CCDF curves 68

2.9 Circuitry impacts from the signal selection
 2.9.1 Constant-envelope (CE) signals 71
 2.9.2 Envelope-varying (EV) signals 71
 2.9.3 Output-power control 72
3 Important details on results from Shannon, Nyquist, and others 74

3.1 DWC channel capacity – the fundamental work of Claude Shannon 74
 3.1.1 Basic capacity relationships to SNR 75
 3.1.2 Basic capacity relationships to IBEND 78
 3.1.3 Finite available power 81
 3.1.4 Power vs. bandwidth for a set capacity 81
 3.1.5 Signal design region: adaptive modulation 83

3.2 Equivalent noise bandwidth (ENB) 85
 3.2.1 ENB of filters 86
 3.2.2 Limitations of the ENB concept 87

3.3 Digital bandlimiting filtering 88
 3.3.1 Conventional digital filtering 88
 Finite-impulse-response (FIR) filters 88
 Infinite-impulse-response (IIR) filters 88
 3.3.2 Generalized Nyquist filter construction (GNFC) 89
 3.3.3 The DZ (derivative-zeroed) pulse family 95
 3.3.4 Superposition lowpass filtering (SLPF) 98

References 100
For further reading 100

4 Digital amplitude modulation (ASK) 102

4.1 Signals and characteristics 102
 4.1.1 Amplitude shift keying definition 102
 4.1.2 Modulation index and envelope dynamic range 103
 Important special case: on-off keying (OOK) 104
 4.1.3 ASK constellation diagrams 104
 4.1.4 Spectrum and signal bandwidth 104
 4.1.5 ASK bandwidth efficiency 106
 4.1.6 ASK power efficiency 107
 4.1.7 PAPR characteristics 108
 4.1.8 Additive noise 109

4.2 ASK signal generation 111
 4.2.1 Variable gain amplifier (VGA) 111
 4.2.2 PA DC-power modulation 112
 4.2.3 Complete-power keying for OOK 113
 4.2.4 Transmitter energy efficiency characteristics 114

4.3 ASK signal demodulation principles 114
 4.3.1 Diode 118
4.3.2 Demodulating logamp/received-signal-strength indication (RSSI) 119
4.3.3 Automatic gain control (AGC) 120
4.3.4 Coherent 121
References 123
For further reading 123

5 Digital frequency modulation: FSK 124

5.1 Signals and characteristics 124
5.1.1 Frequency shift keying definition 124
5.1.2 Modulation index 127
 Important special case: minimum shift keying (MSK) 130
5.1.3 Spectrum and signal bandwidth 131
 Important special cases: Gaussian-filtered FSK 136
5.1.4 FSK bandwidth efficiency 138
5.1.5 FSK power efficiency 140
5.1.6 Doppler shift 140
5.1.7 Additive noise 142
 Threshold effect 142
 Clicks and doublets 143
5.2 FSK signal generation 145
5.2.1 Switched oscillators 145
5.2.2 Voltage-controlled oscillator (VCO) 146
5.2.3 Fractional-division loop 147
5.2.4 Two-point modulation 148
5.2.5 Opened-loop modulation 149
5.2.6 Direct digital (frequency) synthesis (DDS, or also DDFS) 150
5.2.7 Transmitter energy-efficiency characteristics 151
5.3 FSK signal demodulation principles 151
5.3.1 Limiters: compression and capture effects 152
5.3.2 Slope demodulation 155
5.3.3 Frequency discriminators 155
 Resonator 156
 Delay line 156
 Pulse density 157
5.3.4 D-flipflop (DFF) 157
5.3.5 Phaselock loop (PLL) 158
References 158
For further reading 159

6 Digital phase modulation: PSK 160

6.1 Signals and characteristics 160
 Author’s dilemma 160
6.1.1 Phase shift keying 160
6.1.2 Vector diagrams 163
CDF examples for linear transitions 165
6.1.3 PSK phase diagram 166
6.1.4 Delay equivalence 167
6.1.5 Offset modulation (O-PSK) 167
6.1.6 Rotated modulation 169
6.1.7 Spectrum and signal bandwidth 170
6.1.8 Bandwidth efficiency 174
6.1.9 Power efficiency 175
6.1.10 Doppler effects 175
6.1.11 Additive noise 177
Author’s dilemma reprise 178
6.2 PSK signal generation 178
6.2.1 Quadrature modulation 179
6.2.2 Mixer (BPSK) 179
6.2.3 Delay 180
6.2.4 Direct digital synthesis (DDS) 180
6.3 PSK signal demodulation principles 180
6.3.1 Quadrature demodulation 181
6.3.2 Differential demodulation 182
6.3.3 Direct phase demodulation 183
References 184
For further reading 184

7 Combined digital modulations: QAM and OFDM 185
7.1 Signal types and characteristics 185
7.2 Quadrature amplitude modulation (QAM) 185
7.2.1 Constellation diagrams 186
7.2.2 Spectrum and signal bandwidth 189
7.2.3 Bandwidth efficiency 190
7.2.4 Power efficiency 190
7.2.5 PAPR characteristics 192
7.2.6 Offset QAM 193
7.2.7 Doppler sensitivity 193
7.2.8 Additive noise performance 195
7.2.9 Demodulation principles for QAM 202
7.2.10 Tradeoff summary 203
7.2.11 Signal generation and demodulation 204
Essentially always quadrature 204
Using DDS to generate QAM 204
7.3 Orthogonal frequency division modulation (OFDM) 204
Why does OFDM exist?
7 Basic OFDM principles
- Signal order of OFDM 208
- OFDM fundamentals 208
- Waveform discontinuity 210
- Cyclic prefix 211
- OFDM constellation diagrams 212
- Spectrum and signal bandwidth 213
- Bandwidth efficiency 214
- PAPR characteristics 216
- Energy efficiency 218
- Doppler sensitivity 219
- Signal generation and demodulation 220
 - Important special case: 3G long-term evolution (LTE) 221
- Demodulation principles for OFDM 223
- Tradeoff summary 224

8 Spread spectrum
- General principles and characteristics 226
 - Cyclic cancellation 228
 - Synchronization 228
 - Interference suppression 231
 - Process gain 232
 - Jamming margin 233
 - Spreading codes, and chips 234
- Frequency-hopping spread spectrum 235
 - Basic operation 235
 - Synchronization 237
 - Slow and fast frequency hopping 238
 - Modulation selection 238
 - Process gain 239
 - Interference suppression 239
 - Jamming margin 240
- Direct-sequence spread spectrum 240
 - Basic operation 240
 - Negative input SNR 241
 - Synchronization 242
 - De-spreader location 243
 - Modulation selection 244
 - Process gain 244
 - Interference suppression 245
 - Jamming margin 245
8.4 Summary 246
References 246
For further reading 247

9 Wireless propagation and antenna fundamentals 248

9.1 Free-space propagation 249
9.2 Antenna properties 250
 9.2.1 Antenna gain 251
 9.2.2 Directivity 253
 9.2.3 Near and far fields 254
 9.2.4 Polarization 255
9.3 Path loss 256
9.4 Optical equivalence of propagation 258
 9.4.1 Reflections 259
 9.4.2 Shadowing, diffraction, and refraction 261
 9.4.3 Polarization 262
9.5 Doppler shifts 262
9.6 Fading
 Block errors and fade margin 263
9.7 Diversity 264
 Spatial diversity 265
 Polarization diversity 265
 Frequency diversity 266
 Diversity summary 266
9.8 Level diagrams 266
 GEO satellite system example 267
 Personal-area communication example 268
9.9 Specific absorption ratio (SAR) 269
References 269
For further reading 269

10 Principles of coding 270

10.1 Why do coding? And what is coding anyway? 270
10.2 Basic principles of coding 271
10.3 Coding for bandwidth efficiency 273
10.4 Coding for spectrum control and link operation 274
10.5 Coding for error control 277
 10.5.1 Approaching the Shannon Limit 277
 10.5.2 New tradeoffs 280
 10.5.3 Block coding 281
 Block coding for error detection 281
 Block coding for error correction 282
10.5.4 Convolutional coding 284
10.5.5 Interleaving: coding for burst errors 287
10.5.6 Iteratively decoded coding (e.g. Turbo, LDPC) 289
10.5.7 Combination coding: inner and outer codes 290
10.5.8 Trellis coded modulation (TCM) 292
 Trellis diagrams 292
 Bandwidth efficiency 295
10.6 Coding for channel throughput 295
10.7 Equalization 296
References 297
For further reading 297

11 Multiple access techniques 299

11.1 Carrier sense (CSMA) 299
 11.1.1 Protocol basics 300
 11.1.2 Hidden node problem 300
11.2 Frequency division (FDMA) 301
 11.2.1 Channel designations 302
 11.2.2 Coverage strategies 303
 11.2.3 Protocol basics 304
 Duplexing 304
11.3 Time division (TDMA) 305
 11.3.1 Framing 305
 11.3.2 Burst ramp-up and ramp-down spectral effects 307
11.4 Code division (CDMA) 308
 11.4.1 Signal separation 308
 11.4.2 Multiple access interference (MAI) 310
 11.4.3 Power control is essential 311
 11.4.4 Logical channels: “code space” 314
11.5 Orthogonal FDMA 314
 11.5.1 Subcarrier assignment 315
 11.5.2 Orthogonality in the uplink 315
11.6 Space division (SDMA) 316
References 318
For further reading 319

12 Signal tradeoffs and system evolution 320

12.1 Receiver implications of modulation choice 322
12.2 Signal-bandwidth efficiency comparison 327
12.3 Power amplifier cost issues 330
12.4 Signal tolerance of channel-induced problems 331
12.5 Keep-it-Simple ranking of DWC signals 332
12.6 Existing systems and their modulation selections 335

Long, long ago in a place not very far away … 336

References 340
For further reading 340

Tutorial Appendices

Appendix A: Phasor review 341
Appendix B: Decibels (dB) really are simple 343
Appendix C: Analog modulation basics 347
Appendix D: Quadrature modulation and demodulation principles 359
Appendix E: Polar modulation and demodulation principles 372
Appendix F: The derivative-zeroed pulse family 379
Appendix G: Selected DWC standards and their modulations 389

Remote Control Zigbee, RKE, TPMS
Cordless Telephone CT, PHS, DECT
Cellular Analog (historical), NADC, PDC, GSM/GPRS, EDGE, Wideband-CDMA, HSDPA, HSUPA, LTE, cdmaOne (IS-95), cdma2000 1×RTT, EV-DO
Public Service Analog (historical), APCO-25, TETRA
Wireless Data 802.11 (DS and FH), Wi-Fi 1 (802.11b), Wi-Fi 2 (802.11a/g), WiMAX (fixed), WiMAX (mobile)
Personal Area Bluetooth 1.0, Bluetooth – EDR 2.0, Bluetooth – EDR 2.1

Index 401