Arithmetic Optimization Techniques for Hardware and Software Design

RYAN KASTNER
University of California, San Diego

ANUP HOSANGADI
Cadence Design Systems, Inc.

FARZAN FALLAH
Stanford University
Contents

List of abbreviations vii
Preface ix

1 Introduction 1
 1.1 Overview 1
 1.2 Salient features of this book 5
 1.3 Organization 6
 1.4 Target audience 7

2 Use of polynomial expressions and linear systems 9
 2.1 Chapter overview 9
 2.2 Approximation algorithms 9
 2.3 Computer graphics 10
 2.4 Digital signal processing (DSP) 12
 2.5 Cryptography 16
 2.6 Address calculation in data intensive applications 17
 2.7 Summary 19

3 Software compilation 21
 3.1 Chapter overview 21
 3.2 Basic software compiler structure 21
 3.3 Algebraic transformations in optimizing software compilers 25
 3.4 Summary 33

4 Hardware synthesis 35
 4.1 Chapter overview 35
 4.2 Hardware synthesis design flow 35
 4.3 System specification 38
 4.4 Program representation 39
 4.5 Algorithmic optimization 44
 4.6 Resource allocation 45
 4.7 Operation scheduling 49
4.8 Resource binding 56
4.9 Case study: FIR filter 58
4.10 Summary 63

5 Fundamentals of digital arithmetic 68
5.1 Chapter overview 68
5.2 Basic number representation 68
5.3 Two-operand addition 75
5.4 Multiple-operand addition 82
5.5 Summary 93

6 Polynomial expressions 95
6.1 Chapter overview 95
6.2 Polynomial expressions 95
6.3 Problem formulation 96
6.4 Related optimization techniques 96
6.5 Algebraic optimization of arithmetic expressions 99
6.6 Experimental results 113
6.7 Optimal solutions for reducing the number of operations in arithmetic expressions 117
6.8 Summary 123

7 Linear systems 126
7.1 Chapter overview 126
7.2 Linear system basics 126
7.3 Problem formulation 129
7.4 Single-constant multiplication (SCM) 130
7.5 Multiple-constant multiplication (MCM) 133
7.6 Overview of linear system optimizations 140
7.7 Transformation of a linear system into a polynomial expression 142
7.8 Optimization for synthesis using two-operand adders 143
7.9 FIR filter optimization 147
7.10 Synthesis for multiple-operand addition 158
7.11 Delay-aware optimization 164
7.12 Software optimization 174
7.13 Summary 178

Index 182