Contents

Chapter 1 \ An Introduction to Electrode Reactions

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Electrolysis Cells</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Simple Electron-transfer Reactions</td>
<td>9</td>
</tr>
<tr>
<td>1.3.1 Equilibrium Potential</td>
<td>9</td>
</tr>
<tr>
<td>1.3.2 Other Potentials</td>
<td>13</td>
</tr>
<tr>
<td>1.4 Mass Transport</td>
<td>19</td>
</tr>
<tr>
<td>1.4.1 Diffusion Only Conditions</td>
<td>22</td>
</tr>
<tr>
<td>1.4.2 Convective-diffusion Conditions</td>
<td>27</td>
</tr>
<tr>
<td>1.5 Interaction of Electron Transfer and Mass Transport</td>
<td>31</td>
</tr>
<tr>
<td>1.6 Reversible vs Irreversible Electrode Reactions</td>
<td>33</td>
</tr>
<tr>
<td>1.7 Adsorption</td>
<td>36</td>
</tr>
<tr>
<td>1.7.1 Study of Adsorption</td>
<td>37</td>
</tr>
<tr>
<td>1.7.2 Why is Adsorption of Interest?</td>
<td>38</td>
</tr>
<tr>
<td>1.8 Coupled Chemical Reactions</td>
<td>39</td>
</tr>
<tr>
<td>1.9 Phase Formation and Growth</td>
<td>44</td>
</tr>
<tr>
<td>1.10 Multiple Electron Transfer</td>
<td>46</td>
</tr>
<tr>
<td>1.11 Summary</td>
<td>46</td>
</tr>
<tr>
<td>Further Reading</td>
<td>47</td>
</tr>
</tbody>
</table>

Chapter 2 \ The Two Sides of the Interface

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>48</td>
</tr>
<tr>
<td>2.2 Metals</td>
<td>48</td>
</tr>
<tr>
<td>2.2.1 Bulk Structure and Properties</td>
<td>48</td>
</tr>
<tr>
<td>2.2.2 Surface Structure</td>
<td>50</td>
</tr>
</tbody>
</table>

A First Course in Electrode Processes, 2nd Edition
By Derek Pletcher
© Derek Pletcher 2009
Published by the Royal Society of Chemistry, www.rsc.org
2.3 Electrolyte Solution
 2.3.1 Solvent 55
 2.3.2 Electrolyte 57
 2.3.3 Reactant, Intermediates and Product 61
2.4 Ion-permeable Membranes 69
Further Reading 72

Chapter 3 The Interfacial Region

3.1 Introduction 73
3.2 Models of the Electrical Double Layer 75
3.3 Adsorption of Organics 80
3.4 Experimental Consequences of the
 Double Layer 82
 3.4.1 Charging Currents 82
 3.4.2 Electrode Kinetics 84
3.5 Concluding Remarks 85
Further Reading 86

Chapter 4 A Further Look at Electron Transfer

4.1 Introduction 87
4.2 Formal Potential 88
4.3 Kinetics of Electron Transfer 89
 4.3.1 Setting the Scene 89
 4.3.2 Absolute Rate Theory 90
 4.3.3 Fluctuating Energy Level Model for
 Electron Transfer 95
4.4 Some Experimental Results 99
4.5 Electron Transfer with Biomolecules 101
4.6 Correction of Kinetic Parameters for Double
 Layer Effects 103
Further Reading 105

Chapter 5 More Complex Electrode Reactions

5.1 Introduction 107
5.2 Multiple Electron Transfer Reactions 108
5.3 Hydrogen Evolution and Oxidation Reactions 110
 5.3.1 Mechanism I or II – Reaction A as the
 Rate-determining Step 113
 5.3.2 Mechanism I – Reaction B as the
 Rate-determining Step 114
 5.3.3 Mechanism II – Reaction C as the
 Rate-determining Step 115
Contents

5.4 Oxygen Evolution and Reduction 118
5.5 Other Reactions 121
5.6 Electrocatalysis 122
Further Reading 126

Chapter 6 Experimental Electrochemistry 127

6.1 Introduction 127
6.2 The Problems 128
 6.2.1 IR Drop 128
 6.2.2 Double Layer Charging Currents 130
 6.2.3 Electrical Noise 131
 6.2.4 Mass Transport Regime 132
 6.2.5 Solution Contamination 133
 6.2.6 A Reproducible Electrode Surface 134
6.3 Instrumentation 135
6.4 Components in Electrochemical Cells 137
 6.4.1 Working Electrode 137
 6.4.2 Counter Electrode 139
 6.4.3 Reference Electrode 140
 6.4.4 Electrolyte Solution 143
 6.4.5 Separators and Membranes 144
6.5 Some Cell Designs 145
6.6 What is Controlled? 149
Further Reading 153

Chapter 7 Techniques for the Study of Electrode Reactions 154

7.1 Introduction 154
7.2 Steady State Techniques 156
 7.2.1 Electrolysis/Coulometry 156
 7.2.2 Steady State Current Density vs Potential 159
 7.2.3 Rotating Disc Electrodes (RDEs) 159
 7.2.4 Rotating Ring Disc Electrodes (RRDE) 175
7.3 Non-steady State Techniques 177
 7.3.1 Potential Step Experiments 178
 7.3.2 Cyclic Voltammetry 187
 7.3.3 AC Impedance 211
7.4 Microelectrodes 214
 7.4.1 Steady State Experiments 215
 7.4.2 Non-steady State Experiments 216
7.5 Spectroelectrochemistry 217
Further Reading 220
Chapter 8 Fuel Cells

8.1 Introduction
8.2 What is a Fuel Cell?
8.3 Types of Fuel Cell
 8.3.1 Phosphoric Acid Fuel Cells
 8.3.2 Alkaline Fuel Cells
 8.3.3 Polymer Electrolyte Membrane (PEM) Fuel Cells
 8.3.4 Molten Carbonate Fuel Cells
 8.3.5 Solid Oxide Fuel Cells
8.4 H₂/O₂ PEM Fuel Cells
 8.4.1 Solid Polymer Electrolyte (Membrane)
 8.4.2 Cathode Catalyst
 8.4.3 Anode Catalyst
 8.4.4 Membrane Electrode Assemblies
 8.4.5 Bipolar Plate
 8.4.6 Fuel Cell Stack
 8.4.7 Revising the Electrochemistry
 8.4.8 PEM Fuel Cell Performance
 8.4.9 Commercial Developments

Further Reading

Chapter 9 Improving the Environment

9.1 Introduction
9.2 Water Electrolysis
9.3 Providing Clean Water
9.4 Production of Fine Chemicals
9.5 Removal of Metal Ions From Effluent

Further Reading

Chapter 10 Problems and Solutions

10.1 Problems
10.2 Solutions

Subject Index