The Theory of Matrices
Second Edition
with Applications

Peter Lancaster
Department of Mathematics
University of Calgary
Calgary, Alberta, Canada

Miron Tismenetsky
IBM Scientific Center
Technion City
Haifa, Israel

ACADEMIC PRESS
An Imprint of Elsevier
San Diego San Francisco New York Boston
London Sydney Tokyo
Contents

Preface xiii

1 Matrix Algebra
1.1 Special Types of Matrices 2
1.2 The Operations of Addition and Scalar Multiplication 4
1.3 Matrix Multiplication 7
1.4 Special Kinds of Matrices Related to Multiplication 10
1.5 Transpose and Conjugate Transpose 13
1.6 Submatrices and Partitions of a Matrix 16
1.7 Polynomials in a Matrix 19
1.8 Miscellaneous Exercises 21

2 Determinants, Inverse Matrices, and Rank
2.1 Definition of the Determinant 23
2.2 Properties of Determinants 27
2.3 Cofactor Expansions 32
2.4 Laplace’s Theorem 36
2.5 The Binet–Cauchy Formula 39
2.6 Adjoint and Inverse Matrices 42
2.7 Elementary Operations on Matrices 47
2.8 Rank of a Matrix 53
2.9 Systems of Linear Equations and Matrices 56
2.10 The LU Decomposition 61
2.11 Miscellaneous Exercises 63

3 Linear, Euclidean, and Unitary Spaces
3.1 Definition of a Linear Space 71
3.2 Subspaces 75
3. Linear Combinations
- Section 3.3 Linear Combinations: 78
- Section 3.4 Linear Dependence and Independence: 80
- Section 3.5 The Notion of a Basis: 83
- Section 3.6 Sum and Direct Sum of Subspaces: 87
- Section 3.7 Matrix Representation and Rank: 91
- Section 3.8 Some Properties of Matrices Related to Rank: 95
- Section 3.9 Change of Basis and Transition Matrices: 98
- Section 3.10 Solution of Equations: 100
- Section 3.11 Unitary and Euclidean Spaces: 104
- Section 3.12 Orthogonal Systems: 107
- Section 3.13 Orthogonal Subspaces: 111
- Section 3.14 Miscellaneous Exercises: 113

4. Linear Transformations and Matrices
- Section 4.1 Linear Transformations: 117
- Section 4.2 Matrix Representation of Linear Transformations: 122
- Section 4.3 Matrix Representations, Equivalence, and Similarity: 127
- Section 4.4 Some Properties of Similar Matrices: 131
- Section 4.5 Image and Kernel of a Linear Transformation: 133
- Section 4.6 Invertible Transformations: 138
- Section 4.7 Restrictions, Invariant Subspaces, and Direct Sums of Transformations: 142
- Section 4.8 Direct Sums and Matrices: 145
- Section 4.9 Eigenvalues and Eigenvectors of a Transformation: 147
- Section 4.10 Eigenvalues and Eigenvectors of a Matrix: 152
- Section 4.11 The Characteristic Polynomial: 155
- Section 4.12 The Multiplicities of an Eigenvalue: 159
- Section 4.13 First Applications to Differential Equations: 161
- Section 4.14 Miscellaneous Exercises: 164

5. Linear Transformations in Unitary Spaces and Simple Matrices
- Section 5.1 Adjoint Transformations: 168
- Section 5.2 Normal Transformations and Matrices: 174
- Section 5.3 Hermitian, Skew-Hermitian, and Definite Matrices: 178
- Section 5.4 Square Root of a Definite Matrix and Singular Values: 180
- Section 5.5 Congruence and the Inertia of a Matrix: 184
- Section 5.6 Unitary Matrices: 188
- Section 5.7 Polar and Singular-Value Decompositions: 190
- Section 5.8 Idempotent Matrices (Projectors): 194
- Section 5.9 Matrices over the Field of Real Numbers: 200
- Section 5.10 Bilinear, Quadratic, and Hermitian Forms: 202
- Section 5.11 Finding the Canonical Forms: 205
- Section 5.12 The Theory of Small Oscillations: 208
- Section 5.13 Admissible Pairs of Matrices: 212
- Section 5.14 Miscellaneous Exercises: 217
6 The Jordan Canonical Form: A Geometric Approach

- **6.1 Annihilating Polynomials** 221
- **6.2 Minimal Polynomials** 224
- **6.3 Generalized Eigenspaces** 229
- **6.4 The Structure of Generalized Eigenspaces** 232
- **6.5 The Jordan Theorem** 236
- **6.6 Parameters of a Jordan Matrix** 239
- **6.7 The Real Jordan Form** 242
- **6.8 Miscellaneous Exercises** 244

7 Matrix Polynomials and Normal Forms

- **7.1 The Notion of a Matrix Polynomial** 246
- **7.2 Division of Matrix Polynomials** 248
- **7.3 Elementary Operations and Equivalence** 253
- **7.4 A Canonical Form for a Matrix Polynomial** 256
- **7.5 Invariant Polynomials and the Smith Canonical Form** 259
- **7.6 Similarity and the First Normal Form** 262
- **7.7 Elementary Divisors** 265
- **7.8 The Second Normal Form and the Jordan Normal Form** 269
- **7.9 The Characteristic and Minimal Polynomials** 271
- **7.10 The Smith Form: Differential and Difference Equations** 274
- **7.11 Miscellaneous Exercises** 278

8 The Variational Method

- **8.1 Field of Values. Extremal Eigenvalues of a Hermitian Matrix** 283
- **8.2 Courant–Fischer Theory and the Rayleigh Quotient** 286
- **8.3 The Stationary Property of the Rayleigh Quotient** 289
- **8.4 Problems with Constraints** 290
- **8.5 The Rayleigh Theorem and Definite Matrices** 294
- **8.6 The Jacobi–Gundelfinger–Frobenius Method** 296
- **8.7 An Application of the Courant–Fischer Theory** 300
- **8.8 Applications to the Theory of Small Vibrations** 302

9 Functions of Matrices

- **9.1 Functions Defined on the Spectrum of a Matrix** 305
- **9.2 Interpolatory Polynomials** 306
- **9.3 Definition of a Function of a Matrix** 308
- **9.4 Properties of Functions of Matrices** 310
- **9.5 Spectral Resolution of f(A)** 314
- **9.6 Component Matrices and Invariant Subspaces** 320
- **9.7 Further Properties of Functions of Matrices** 322
| 9.8 | Sequences and Series of Matrices | 325 |
| 9.9 | The Resolvent and the Cauchy Theorem for Matrices | 329 |
| 9.10 | Applications to Differential Equations | 334 |
| 9.11 | Observable and Controllable Systems | 340 |
| 9.12 | Miscellaneous Exercises | 345 |

10 Norms and Bounds for Eigenvalues

10.1	The Notion of a Norm	350
10.2	A Vector Norm as a Metric: Convergence	354
10.3	Matrix Norms	358
10.4	Induced Matrix Norms	362
10.5	Absolute Vector Norms and Lower Bounds of a Matrix	367
10.6	The Geršgorin Theorem	371
10.7	Geršgorin Disks and Irreducible Matrices	374
10.8	The Schur Theorem	377
10.9	Miscellaneous Exercises	380

11 Perturbation Theory

11.1	Perturbations in the Solution of Linear Equations	383
11.2	Perturbations of the Eigenvalues of a Simple Matrix	387
11.3	Analytic Perturbations	391
11.4	Perturbation of the Component Matrices	393
11.5	Perturbation of an Unrepeated Eigenvalue	395
11.6	Evaluation of the Perturbation Coefficients	397
11.7	Perturbation of a Multiple Eigenvalue	399

12 Linear Matrix Equations and Generalized Inverses

12.1	The Notion of a Kronecker Product	406
12.2	Eigenvalues of Kronecker Products and Composite Matrices	411
12.3	Applications of the Kronecker Product to Matrix Equations	413
12.4	Commuting Matrices	416
12.5	Solutions of $AX + XB = C$	421
12.6	One-Sided Inverses	424
12.7	Generalized Inverses	428
12.8	The Moore–Penrose Inverse	432
12.9	The Best Approximate Solution of the Equation $Ax = b$	435
12.10	Miscellaneous Exercises	438

13 Stability Problems

| 13.1 | The Lyapunov Stability Theory and Its Extensions | 441 |
| 13.2 | Stability with Respect to the Unit Circle | 451 |
CONTENTS

13.3 The Bezoutian and the Resultant 454
13.4 The Hermite and the Routh–Hurwitz Theorems 461
13.5 The Schur–Cohn Theorem 466
13.6 Perturbations of a Real Polynomial 468
13.7 The Liénard–Chipart Criterion 470
13.8 The Markov Criterion 474
13.9 A Determinantal Version of the Routh–Hurwitz Theorem 478
13.10 The Cauchy Index and Its Applications 482

14 Matrix Polynomials

14.1 Linearization of a Matrix Polynomial 490
14.2 Standard Triples and Pairs 493
14.3 The Structure of Jordan Triples 500
14.4 Applications to Differential Equations 506
14.5 General Solutions of Differential Equations 509
14.6 Difference Equations 512
14.7 A Representation Theorem 516
14.8 Multiples and Divisors 518
14.9 Solvents of Monic Matrix Polynomials 520

15 Nonnegative Matrices

15.1 Irreducible Matrices 528
15.2 Nonnegative Matrices and Nonnegative Inverses 530
15.3 The Perron–Frobenius Theorem (I) 532
15.4 The Perron–Frobenius Theorem (II) 538
15.5 Reducible Matrices 543
15.6 Primitive and Imprimitive Matrices 544
15.7 Stochastic Matrices 547
15.8 Markov Chains 550

Appendix 1: A Survey of Scalar Polynomials 553
Appendix 2: Some Theorems and Notions from Analysis 557
Appendix 3: Suggestions for Further Reading 560

Index 563