Nonequilibrium Statistical Physics
Linear Irreversible Processes

Noëlle Pottier
Laboratoire Matière et Systèmes Complexes, CNRS, and
Université Paris Diderot – Paris 7
Contents

Chapter 1
Random variables and random processes
1. Random variables, moments, and characteristic function 2
2. Multivariate distributions 4
3. Addition of random variables 6
4. Gaussian distributions 7
5. The central limit theorem 9
6. Random processes 12
7. Stationarity and ergodicity 14
8. Random processes in physics: the example of Brownian motion 16
9. Harmonic analysis of stationary random processes 17
10. The Wiener–Khintchine theorem 19

Appendix
1A. An alternative derivation of the Wiener–Khintchine theorem 23

Bibliography
25

References
25

Chapter 2
Linear thermodynamics of irreversible processes
1. A few reminders of equilibrium thermodynamics 28
2. Description of irreversible processes: affinities and fluxes 29
3. The local equilibrium hypothesis 32
4. Affinities and fluxes in a continuous medium in local equilibrium 34
5. Linear response 37
6. A few simple examples of transport coefficients 38
7. Curie's principle 42
8. The reciprocity relations 43
9. Justification of the reciprocity relations 45
10. The minimum entropy production theorem 48

Bibliography
50

References
50
Supplement 6A
Landau damping
 1 Weakly coupled plasma 148
 2 The Vlasov equations for a collisionless plasma 148
 3 Conductivity and electrical permittivity of a collisionless plasma 151
 4 Longitudinal waves in a Maxwellian plasma 154
Bibliography 157

Chapter 7
From the Boltzmann equation to the hydrodynamic equations 159
 1 The hydrodynamic regime 160
 2 Local balance equations 161
 3 The Chapman–Enskog expansion 165
 4 The zeroth-order approximation 168
 5 The first-order approximation 169
Appendices
 7A A property of the collision integral 175
 7B Newton’s law and viscosity coefficient 176
Bibliography 180

Chapter 8
The Bloch–Boltzmann theory of electronic transport 181
 1 The Boltzmann equation for the electron gas 182
 2 The Boltzmann equation’s collision integral 184
 3 Detailed balance 187
 4 The linearized Boltzmann equation 188
 5 Electrical conductivity 189
 6 Semiclassical transport in the presence of a magnetic field 192
 7 Validity limits of the Bloch–Boltzmann theory 198
Bibliography 200
References 200

Supplement 8A
Collision processes 201
 1 Introduction 201
 2 Electron–impurity scattering 201
 3 Electron–phonon scattering 207
Bibliography 211
References 211

Supplement 8B
Thermoelectric coefficients 212
 1 Particle and heat fluxes 212
 2 General expression for the kinetic coefficients 213
 3 Thermal conductivity 213
 4 The Seebeck and Peltier coefficients 215
Bibliography 217
Chapter 11
Brownian motion: the Fokker-Planck equation
1 Evolution of the velocity distribution function
2 The Kramers–Moyal expansion
3 The Fokker–Planck equation
4 Brownian motion and Markov processes
Bibliography
References

Supplement 11A
Random walk
1 The drunken walker
2 Diffusion of a drunken walker on a lattice
3 The diffusion equation
Bibliography
References

Supplement 11B
Brownian motion: Gaussian processes
1 Harmonic analysis of stationary Gaussian processes
2 Gaussian Markov stationary processes
3 Application to Brownian motion
Bibliography
References

Chapter 12
Linear responses and equilibrium correlations
1 Linear response functions
2 Generalized susceptibilities
3 The Kramers–Kronig relations
4 Dissipation
5 Non-uniform phenomena
6 Equilibrium correlation functions
7 Properties of the equilibrium autocorrelation functions
Appendix
12A An alternative derivation of the Kramers–Kronig relations
Bibliography
References

Supplement 12A
Linear response of a damped oscillator
1 General interest of the study
2 The undamped oscillator
3 Oscillator damped by viscous friction
4 Generalized susceptibility
5 The displacement response function
Bibliography
Supplement 12B

Electronic polarization 329
 1 Semiclassical model 329
 2 Polarization response function 330
 3 Generalized susceptibility 331
 4 Comparison with the Lorentz model 331
Bibliography 334

Supplement 12C

Some examples of dynamical structure factors 335
 1 The examples 335
 2 Free atom 335
 3 Atom in a harmonic potential 337
Bibliography 340

Chapter 13

General linear response theory 341
 1 The object of linear response theory 342
 2 First-order evolution of the density operator 342
 3 The linear response function 345
 4 Relation with the canonical correlation function 347
 5 Generalized susceptibility 348
 6 Spectral function 350
 7 Relaxation 352
 8 Symmetries of the response and correlation functions 357
 9 Non-uniform phenomena 359

Appendices
 13A Classical linear response 361
 13B Static susceptibility of an isolated system and isothermal susceptibility 363
Bibliography 367
References 367

Supplement 13A

Dielectric relaxation 368
 1 Dielectric permittivity and polarizability 368
 2 Microscopic polarization mechanisms 371
 3 The Debye theory of dielectric relaxation 371
 4 A microscopic model of orientational polarization 374
Bibliography 378
References 378

Supplement 13B

Magnetic resonance 379
 1 Formulation of the problem 379
 2 Phenomenological theory 380
 3 A microscopic model 383
Bibliography 388
Chapter 14
The fluctuation-dissipation theorem 389
1 Dissipation 390
2 Equilibrium fluctuations 393
3 The fluctuation-dissipation theorem 395
4 Positivity of $\omega \chi''_{AA}(\omega)$ 398
5 Static susceptibility 398
6 Sum rules 400
Bibliography 403
References 403

Supplement 14A
Dissipative dynamics of a harmonic oscillator 404
1 Oscillator coupled with a thermal bath 404
2 Dynamics of the uncoupled oscillator 404
3 Response functions and susceptibilities of the coupled oscillator 407
4 Analysis of $\chi_{xx}(\omega)$ 409
5 Dynamics of the weakly coupled oscillator 415
Bibliography 417
References 417

Chapter 15
Quantum theory of electronic transport 419
1 The Kubo-Nakano formula 420
2 The Kubo-Greenwood formula 423
3 Conductivity of an electron gas in the presence of impurities 427
Bibliography 431
References 431

Supplement 15A
Conductivity of a weakly disordered metal 433
1 Introduction 433
2 The Kubo-Greenwood formula 433
3 Conductivity of a macroscopic system 436
4 Conductance of a mesoscopic system: Landauer’s approach 438
5 Addition of quantum resistances in series: localization 440
Bibliography 445
References 445

Chapter 16
Thermal transport coefficients 447
1 The indirect Kubo method 448
2 The source of entropy and the equivalent ‘Hamiltonian’ 452
Bibliography 457
References 457
Supplement 16A

Diffusive light waves

1. Diffusive light transport 458
2. Diffusion coefficient of light intensity 459
3. Diffusive wave spectroscopy 462

Bibliography 467

References 467

Supplement 16B

Light scattering by a fluid

1. Introduction 468
2. Linearized hydrodynamic equations 468
3. Transverse fluctuations 470
4. Longitudinal fluctuations 472
5. Dynamical structure factor 478

Bibliography 480

References 480

Index

481