Knowledge-Based Systems

Rajendra Arvind Akerkar
Chairman, Technomathematics Research Foundation
and Senior Researcher, Western Norway Research Institute

Priti Srinivas Sajja
Sardar Patel University

JONES AND BARTLETT PUBLISHERS
Sudbury, Massachusetts
BOSTON TORONTO LONDON SINGAPORE
Chapter 2 Knowledge-Based Systems Architecture 29

2.1 Source of the Knowledge 29
2.2 Types of Knowledge 30
 2.2.1 Commonsense and Informed Commonsense Knowledge 30
 2.2.2 Heuristic Knowledge 30
 2.2.3 Domain Knowledge 30
 2.2.4 Metaknowledge 31
 2.2.5 Classifying Knowledge According to Its Use 31
 2.2.6 Classifying Knowledge According to Its Nature 31
2.3 Desirable Characteristics of Knowledge 33
2.4 Components of Knowledge 33
 2.4.1 Facts 33
 2.4.2 Rules 34
 2.4.3 Heuristics 34
2.5 Basic Structure of Knowledge-Based Systems 34
2.6 Knowledge Base 35
2.7 Inference Engine 36
 2.7.1 Modus Ponens 36
 2.7.2 Modus Tollens 37
 2.7.3 Forward Chaining 38
 2.7.4 Backward Chaining 38
 2.7.5 Forward Versus Backward Chaining 39
 2.7.6 Conflict Resolution Strategies for Rule-Based Systems 42
2.8 Self-Learning 42
2.9 Reasoning 42
2.10 Explanation 43
2.11 Applications 43
 2.11.1 Advisory Systems 43
 2.11.2 Health Care and Medical Diagnosis Systems 44
 2.11.3 Tutoring Systems 44
 2.11.4 Control and Monitoring 44
 2.11.5 Prediction 44
 2.11.6 Planning 45
 2.11.7 Searching Larger Databases and Data Warehouses 45
 2.11.8 Knowledge-Based Grid and Semantic Web 45
2.12 Knowledge-Based Shell 45
2.13 Advantages of Knowledge-Based Systems 46
 2.13.1 Permanent Documentation of Knowledge 46
 2.13.2 Cheaper Solution and Easy Availability of Knowledge 46
2.13.3 Dual Advantages of Effectiveness and Efficiency 47
2.13.4 Consistency and Reliability 47
2.13.5 Justification for Better Understanding 47
2.13.6 Self-Learning and Ease of Updates 47

2.14 Limitations of Knowledge-Based Systems 48
2.14.1 Partial Self-Learning 48
2.14.2 Creativity and Innovation 48
2.14.3 Weak Support of Methods and Heuristics 48
2.14.4 Development Methodology 49
2.14.5 Knowledge Acquisition 49
2.14.6 Structured Knowledge Representation and Ontology Mapping 50
2.14.7 Development of Testing and Certifying Strategies and Standards for Knowledge-Based Systems 50

2.15 Warm-Up Questions, Exercises, and Projects 51

Chapter 3 Developing Knowledge-Based Systems 55
3.1 Nature of Knowledge-Based Systems 55
3.2 Difficulties in KBS Development 56
3.2.1 High Cost and Effort 56
3.2.2 Dealing with Experts 56
3.2.3 The Nature of the Knowledge 56
3.2.4 The High Level of Risk 56

3.3 Knowledge-Based Systems Development Model 58
3.4 Knowledge Acquisition 60
3.4.1 Knowledge Engineer 60
3.4.2 Domain Experts 60
3.4.3 Knowledge Elicitation 60
3.4.4 Steps of Knowledge Acquisition 60

3.5 Existing Techniques for Knowledge Acquisition 62
3.5.1 Reviewing the Literature 62
3.5.2 Interview and Protocol Analysis 62
3.5.3 Surveys and Questionnaires 63
3.5.4 Observation 63
3.5.5 Diagram-Based Techniques 63
3.5.6 Generating Prototypes 63
3.5.7 Concept Sorting 63

3.6 Developing Relationships with Experts 64
3.7 Sharing Knowledge 64
3.7.1 Problem Solving 65
3.7.2 Talking and Storytelling 65
3.7.3 Supervisory Style 65

3.8 Dealing with Multiple Experts 65
3.8.1 Handling Individual Experts 66
3.8.2 Handling Experts in Hierarchical Fashion 66
3.8.3 Small-Group Approach 66
3.9 Issues with Knowledge Acquisition 67
3.10 Updating Knowledge 67
3.10.1 Self-Updates 67
3.10.2 Manual Updates by Knowledge Engineer 67
3.10.3 Manual Updates by Experts 68
3.11 Knowledge Representation 68
3.12 Factual Knowledge 70
3.12.1 Constants 70
3.12.2 Variables 70
3.12.3 Functions 70
3.12.4 Predicates 71
3.12.5 Well-Formed Formulas 71
3.12.6 First-Order Logic 71
3.13 Representing Procedural Knowledge 72
3.13.1 Production Rules 72
3.13.2 Semantic Networks 73
3.13.3 Frames 75
3.13.4 Scripts 76
3.13.5 Hybrid Structures 76
3.13.6 Semantic Web Structures 79
3.14 Users of Knowledge-Based Systems 80
3.15 Knowledge-Based System Tools 80
3.15.1 C Language Integrated Production System (CLIPS) 82
3.15.2 Java Expert System Shell (JESS) 85
3.16 Warm-Up Questions, Exercises, and Projects 90

Chapter 4 Knowledge Management 95
4.1 Introduction to Knowledge Management 95
4.2 Perspectives of Knowledge Management 96
4.2.1 Technocentric 96
4.2.2 Organizational 97
4.2.3 Ecological 97
4.3 What Drives Knowledge Management? 97
4.3.1 Size and Dispersion of an Organization 97
4.3.2 Reducing Risk and Uncertainty 98
4.3.3 Improving the Quality of Decisions 98
4.3.4 Improving Customer Relationships 98
4.3.5 Technocentric Support 98
4.3.6 Intellectual Asset Management and Prevention of Knowledge Loss 99
4.3.7 Future Use of Knowledge 99
4.3.8 Increase Market Value and Enhance an Organization's Brand Image 99
4.3.9 Shorter Product Cycles 99
4.3.10 Restricted Access and Added Security 99
4.4 Typical Evolution of Knowledge Management within an Organization 100
4.4.1 Ad-hoc Knowledge 100
4.4.2 Sophisticated Knowledge Management 100
4.4.3 Embedded Knowledge Management 100
4.4.4 Integrated Knowledge Management 100
4.5 Elements of Knowledge Management 100
4.5.1 People and Skills 101
4.5.2 Procedures 102
4.5.3 Strategy and Policy 102
4.5.4 Technology 102
4.6 The Knowledge Management Process 102
4.6.1 Knowledge Discovery and Innovation 103
4.6.2 Knowledge Documentation 104
4.6.3 Knowledge Use 104
4.6.4 Knowledge Sharing Through Pull and Push Technologies 104
4.7 Knowledge Management Tools and Technologies 104
4.7.1 Tools for Discovering Knowledge 104
4.7.2 Tools for Documenting Knowledge 105
4.7.3 Tools for Sharing and Using Knowledge 106
4.7.4 Technologies for Knowledge Management 108
4.8 Knowledge Management Measures 111
4.9 Knowledge Management Organization 112
4.10 Knowledge Management Roles and Responsibilities 113
4.10.1 Chief Knowledge Officer (CKO) 114
4.10.2 Knowledge Engineer (KE) 114
4.10.3 Knowledge Facilitator (KF) 114
4.10.4 Knowledge Worker (KW) 114
4.10.5 Knowledge Consultant (KC) 115
4.11 Knowledge Management Models 115
4.11.1 Transaction Model 116
4.11.2 Cognitive Model 116
4.11.3 Network Model 117
4.11.4 Community Model 117
4.12 Models for Categorizing Knowledge 117
4.12.1 Knowledge Spiral Model 117
4.12.2 Knowledge Management Model 118
4.12.3 Knowledge Category Model 118
4.13 Models for Intellectual Capital Management 118
4.14 Socially Constructed Knowledge Management Models 119
7.5 Learning Paradigms 205
7.6 Other Neural Network Models 207
 7.6.1 Kohonen Maps 207
 7.6.2 Probabilistic Neural Networks 208
7.7 Integrating Neural Networks and Knowledge-Based Systems 209
7.8 Applications for Neural Networks 210
 7.8.1 Applications for the Back-Propagation Model 211
7.9 Warm-Up Questions, Exercises, and Projects 212

Chapter 8 Genetic Algorithms 215
8.1 Introduction 215
8.2 Basic Terminology 216
8.3 Genetic Algorithms 218
8.4 Genetic Cycles 219
8.5 Basic Operators of a Genetic Algorithm 219
 8.5.1 Mutation 220
 8.5.2 Crossover 220
 8.5.3 Selection 222
8.6 Function Optimization 223
 8.6.1 Stopping Criteria 226
8.7 Schema 226
 8.7.1 Schema Defined 227
 8.7.2 Instance, Defined Bits, and Order of Schema 227
 8.7.3 The Importance of Schema Results 227
8.8 Ordering Problems and Edge Recombination 228
 8.8.1 Traveling Salesperson Problem 228
 8.8.2 Solutions to Prevent Production of Invalid Offspring 229
 8.8.3 Edge Recombination Technique 229
8.9 Island-Based Genetic Algorithms 230
8.10 Problem Solving Using Genetic Algorithms 230
8.11 Bayesian Networks and Genetic Algorithms 232
8.12 Applications and Research Trends in GA 233
8.13 Warm-Up Questions, Exercises, and Projects 236

Chapter 9 Soft Computing Systems 239
9.1 Introduction to Soft Computing 239
9.2 Constituents of Soft Computing 240
9.3 Characteristics of Soft Computing 243
 9.3.1 Simulation of Human Expertise 243
 9.3.2 Innovative Techniques 243
 9.3.3 Natural Evolution 243
 9.3.4 Model-Free Learning 243
9.3.5 Goal-Driven 244
9.3.6 Extensive Numerical Computations 244
9.3.7 Dealing with Partial and Incomplete Information 244
9.3.8 Fault Intolerance 244
9.4 Neuro-Fuzzy Systems 244
 9.4.1 Fuzzy Neural Networks 246
 9.4.2 Cooperative Neuro-Fuzzy Model 246
 9.4.3 Concurrent Neuro-Fuzzy Model 246
 9.4.4 Hybrid Neuro-Fuzzy Model 247
9.5 Genetic-Fuzzy Systems 247
 9.5.1 Genetic Algorithms Controlled by Fuzzy Logic 248
 9.5.2 Fuzzy Evolutionary Systems 248
 9.5.3 Evolving Knowledge Bases and Rule Sets 250
9.6 Neuro-Genetic Systems 251
 9.6.1 Neural Network Weight Training 253
 9.6.2 Evolving Neural Nets 254
9.7 Genetic-Fuzzy-Neural Networks 257
9.8 Chaos Theory 259
 9.8.1 Basic Constructs 259
 9.8.2 Hybridization 262
9.9 Rough Set Theory 263
 9.9.1 Pawlak’s Information System 263
 9.9.2 Rough Sets 265
 9.9.3 Rough Logic 267
 9.9.4 Rough Models 268
 9.9.5 Rough-Set-Based Systems 268
9.10 Applications of Soft Computing 270
9.11 Warm-Up Questions, Exercises, and Projects 272

Chapter 10 Knowledge-Based Multiagent System Accessing Distributed Database Grid: An E-Learning Solution 277
10.1 Introduction and Background 277
 10.1.1 E-learning Defined 277
 10.1.2 Major Components of E-learning 278
 10.1.3 Objectives of E-learning 279
 10.1.4 Advantages of E-learning 279
10.2 Existing E-learning Solutions: Work Done So Far 279
10.3 Requirements for an Ideal E-learning Solution 280
 10.3.1 Quality Parameters for an Ideal E-learning Solution 281
10.4 Toward a Knowledge-Based Multiagent Approach 283
 10.4.1 Objectives of a Knowledge-Based Multiagent E-learning Solution 284
 10.4.2 Introduction to Multiagent Systems 284
 10.4.3 Advantages of a Knowledge-Based Multiagent Approach for E-learning 285
10.5 System Architecture and Methodology 286
 10.5.1 System Agents 287
 10.5.2 Interaction Between Agents 288
 10.5.3 Middleware Services 288
10.6 Knowledge Representation and System Output 289
10.7 Results of the Experiment 291
 10.7.1 Advantages Achieved 292
10.8 Conclusion 292

Chapter 11 Knowledge-Intensive Learning: Diet Menu Planner 297
 11.1 Introduction 297
 11.2 Case Retrieval 299
 11.2.1 The Identify Features 299
 11.2.2 Matching 299
 11.3 Case Reuse 300
 11.4 Case Revision 301
 11.5 Case Retention 301
 11.6 Organization of Cases in Memory 302
 11.7 DietMaster 303
 11.7.1 General Menu-Planning Process for Diabetic Patients 304
 11.7.2 The DietMaster Architecture 305
 11.8 Knowledge Model 308
 11.9 Representation of Different Knowledge Types 308
 11.9.1 Case Structure 310
 11.9.2 General Knowledge 310
 11.9.3 Rules 311
 11.9.4 Procedures 314
 11.10 Problem Solving in DietMaster 316
 11.11 Integrated Reasoning in DietMaster 317
 11.12 Problem Solving and Reasoning Algorithm 319
 11.13 The Learning Process 319
 11.13.1 The Learning Algorithm 319
 11.14 Feedback on Diet Plan 320
 11.15 Conclusion 322

Chapter 12 Natural Language Interface: Question Answering System 323
 12.1 Introduction 323
 12.1.1 Open-Domain Question Answering 327
 12.1.2 Closed-Domain Question Answering 328
 12.2 Natural Language Interface to Structured Data 328
 12.3 Natural Language Interface to Unstructured Data 331
 12.4 Different Approaches to Language 334
12.4.1 Symbolic (Rule-Based) Approach 335
12.4.2 Empirical (Corpus-Based) Approach 335
12.4.3 Connectionist Approach (Using a Neural Network) 336
12.5 Semantic-Level Problems 336
12.6 Shallow Parsing 338
12.6.1 Semantic Symmetry 338
12.6.2 Sentence Patterns and Semantic Symmetry 339
12.6.3 An Algorithm 340
12.7 Ambiguous Modification 341
12.8 Conclusion 344

Index 347