RADIATING NONUNIFORM TRANSMISSION-LINE SYSTEMS AND THE PARTIAL ELEMENT EQUIVALENT CIRCUIT METHOD

Jürgen Nitsch, Frank Gronwald and Günter Wollenberg

Otto-von-Guericke-University Magdeburg

©WILEY

A John Wiley and Sons, Ltd., Publication
Contents

Preface xv
References xvii
Acknowledgments xix
List of Symbols xxi
Introduction xxxi
References xxxviii

1 Fundamentals of Electrodynamics 1
1.1 Maxwell Equations Derived from Conservation Laws – an Axiomatic Approach 1
 1.1.1 Charge Conservation 3
 1.1.2 Lorentz Force and Magnetic Flux Conservation 5
 1.1.3 Constitutive Relations and the Properties of Spacetime 11
 1.1.4 Remarks 12
1.2 The Electromagnetic Field as a Gauge Field – a Gauge Field Approach 13
 1.2.1 Differences of Physical Fields that are Described by Reference Systems 14
 1.2.2 The Phase of Microscopic Matter Fields 15
 1.2.3 The Reference Frame of a Phase 16
 1.2.4 The Gauge Fields of a Phase 18
 1.2.5 Dynamics of the Gauge Field 21
1.3 The Relation Between the Axiomatic Approach and the Gauge Field Approach 24
 1.3.1 Noether Theorem and Electric Charge Conservation 24
 1.3.2 Minimal Coupling and the Lorentz Force 24
 1.3.3 Bianchi Identity and Magnetic Flux Conservation 26
 1.3.4 Gauge Approach and Constitutive Relations 27
1.4 Solutions of Maxwell Equations 28
 1.4.1 Wave Equations 29
 1.4.1.1 Decoupling of Maxwell Equations 29
 1.4.1.2 Equations of Motion for the Electromagnetic Potentials 30
 1.4.1.3 Maxwell Equations in the Frequency Domain and Helmholtz Equations 31
 1.4.1.4 Maxwell Equations in Reciprocal Space 32
 1.4.2 Boundary Conditions at Interfaces 33
 1.4.3 Dynamical and Nondynamical Components of the Electromagnetic Field 33
 1.4.3.1 Helmholtz’s Vector Theorem, Longitudinal and Transverse Fields 33
 1.4.3.2 Nondynamical Maxwell Equations as Boundary Conditions in Time 35
1.4.3.3 Longitudinal Part of the Maxwell Equations

1.4.3.4 Transverse Part of the Maxwell Equations

1.4.4 Electromagnetic Energy and the Singularities of the Electromagnetic Field

1.4.5 Coulomb Fields and Radiation Fields

1.4.6 The Green’s Function Method

1.4.6.1 Basic Ideas

1.4.6.2 Self-Adjointness of Differential Operators and Boundary Conditions

1.4.6.3 General Solutions of Maxwell Equations

1.4.6.4 Basic Relations Between Electromagnetic Green’s Functions

1.5 Boundary Value Problems and Integral Equations

1.5.1 Surface Integral Equations in Short

1.5.2 The Standard Electric Field Integral Equations of Antenna Theory and Radiating Nonuniform Transmission-Line Systems

1.5.2.1 Pocklington’s Equation

1.5.2.2 Hallén’s Equation

1.5.2.3 Mixed-Potential Integral Equation

1.5.2.4 Schelkunoff’s Equation

References

2 Nonuniform Transmission-Line Systems

2.1 Multiconductor Transmission Lines: General Equations

2.1.1 Geometric Representation of Nonuniform Transmission Lines

2.1.1.1 Local Coordinate System

2.1.1.2 Tangential Surface Vector

2.1.1.3 Volume and Surface Integrals

2.1.2 Derivation of Generalized Transmission-Line Equations

2.1.2.1 Continuity Equation

2.1.2.2 Reconstruction of the Densities

2.1.3 Mixed Potential Integral Equation

2.1.3.1 Thin-Wire Approximation

2.1.3.2 Representation as Matrix Equations

2.1.3.3 Current and Charge Trial Function

2.1.3.4 Generalized Telegrapher Equations and TLST

2.1.4 Computation of Generalized Transmission-Line Parameters

2.1.4.1 Parameters

2.1.4.2 Source Terms

2.1.4.3 Solution of the Extended Telegrapher Equations

2.1.4.4 Returning to Voltages?

2.1.4.5 Discussion of the New Parameters

2.1.4.6 Asymmetric Parameter Matrices

2.1.5 Numerical Evaluation of the Parameters

2.1.5.1 Starting Values for the Iteration

2.1.5.2 First Iteration

2.1.5.3 Taylor Series Expansion of the Product Integral

2.1.5.4 Eigenvalue Decomposition

2.1.5.5 Discussion of the Numerical Methods

2.2 General Calculation Methods for the Product Integral/Matrizant

2.2.1 Picard Iteration
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.2.2 Spherical Shell</td>
<td>171</td>
</tr>
<tr>
<td>3.4.2.3 Application to Thin Conductive Shells</td>
<td>172</td>
</tr>
<tr>
<td>3.4.2.4 Conclusions</td>
<td>177</td>
</tr>
<tr>
<td>References</td>
<td>177</td>
</tr>
<tr>
<td>4 The Method of Partial Element Equivalent Circuits (PEEC Method)</td>
<td>179</td>
</tr>
<tr>
<td>4.1 Fundamental Equations</td>
<td>179</td>
</tr>
<tr>
<td>4.1.1 Maxwell Equations and Real Media for Interconnections</td>
<td>179</td>
</tr>
<tr>
<td>4.1.2 Mixed Potential Integral Equations (MPIE)</td>
<td>183</td>
</tr>
<tr>
<td>4.2 Derivation of the Generalized PEEC Method in the Frequency Domain</td>
<td>186</td>
</tr>
<tr>
<td>4.2.1 The PEEC Equation System in the Frequency Domain</td>
<td>186</td>
</tr>
<tr>
<td>4.2.2 Generalized Partial Elements and Circuit Interpretation</td>
<td>191</td>
</tr>
<tr>
<td>4.3 Classification of PEEC Models</td>
<td>193</td>
</tr>
<tr>
<td>4.3.1 Classification in Dependence on Media</td>
<td>193</td>
</tr>
<tr>
<td>4.3.1.1 PEEC Models for Conductors</td>
<td>193</td>
</tr>
<tr>
<td>4.3.1.2 PEEC Models for Dielectrics</td>
<td>194</td>
</tr>
<tr>
<td>4.3.2 Classification in Dependence on the Relation of the Maximum Frequency of Interest to the Discretization Length</td>
<td>194</td>
</tr>
<tr>
<td>4.3.2.1 PEEC Models with Generalized Partial Elements</td>
<td>194</td>
</tr>
<tr>
<td>4.3.2.2 PEEC Models with Center-to-Center Retardation</td>
<td>195</td>
</tr>
<tr>
<td>4.3.2.3 Quasi-Static PEEC Models</td>
<td>196</td>
</tr>
<tr>
<td>4.4 PEEC Models for the Plane Half Space</td>
<td>197</td>
</tr>
<tr>
<td>4.5 Geometrical Discretization in PEEC Modeling</td>
<td>201</td>
</tr>
<tr>
<td>4.5.1 Orthogonal Cells</td>
<td>201</td>
</tr>
<tr>
<td>4.5.2 Nonorthogonal Cells</td>
<td>202</td>
</tr>
<tr>
<td>4.5.3 Triangular Cells</td>
<td>205</td>
</tr>
<tr>
<td>4.6 PEEC Models for the Time Domain and the Stability Issue</td>
<td>209</td>
</tr>
<tr>
<td>4.6.1 Standard PEEC Models for the Time Domain</td>
<td>210</td>
</tr>
<tr>
<td>4.6.2 General Remarks on Stability of PEEC Model Solutions</td>
<td>211</td>
</tr>
<tr>
<td>4.6.3 Stability Improvement of PEEC Models with Center-to-Center Retardation</td>
<td>212</td>
</tr>
<tr>
<td>4.6.4 Stable Time Domain PEEC Models by Parametric Macromodeling the Generalized Partial Elements</td>
<td>214</td>
</tr>
<tr>
<td>4.6.4.1 Stable Time Domain PEEC Models by Full-Spectrum Convolution Macromodeling (FSCM)</td>
<td>214</td>
</tr>
<tr>
<td>4.6.4.2 Stable Time Domain PEEC Models by Macromodeling Using Foster's Rational Functions and Circuit Synthesis</td>
<td>219</td>
</tr>
<tr>
<td>4.7 Skin Effect in PEEC Models</td>
<td>220</td>
</tr>
<tr>
<td>4.7.1 Cross-Sectional Discretization of Wires</td>
<td>220</td>
</tr>
<tr>
<td>4.7.2 Skin Effect Modeling by Means of a Global Surface Impedance</td>
<td>221</td>
</tr>
<tr>
<td>4.7.3 Skin Effect Modeling by Means of a Local Mean Surface Impedance</td>
<td>222</td>
</tr>
<tr>
<td>4.8 PEEC Models Based on Dyadic Green's Functions for Conducting Structures in Layered Media</td>
<td>227</td>
</tr>
<tr>
<td>4.8.1 Motivation</td>
<td>227</td>
</tr>
<tr>
<td>4.8.2 The DGFLM–PEEC Method</td>
<td>228</td>
</tr>
<tr>
<td>4.8.3 DGFLM–PEEC Model for the Stripline Region</td>
<td>233</td>
</tr>
<tr>
<td>4.8.3.1 Green's Functions for the Stripline Region</td>
<td>234</td>
</tr>
<tr>
<td>4.8.3.2 Discussion of the Behavior of the Green's Functions</td>
<td>235</td>
</tr>
</tbody>
</table>
4.8.3.3 Frequency Domain DGFLM-PEEC Model 236
4.8.3.4 DGFLM-PEEC Models in the Time Domain 243
4.9 PEEC Models and Uniform Transmission Lines 248
4.10 Power Considerations in PEEC Models 252
 4.10.1 General Remarks 252
 4.10.2 Power Analysis of Magnetic and Electric Couplings 253
 4.10.3 Power Analysis of PEEC Models 255
References 257

Appendix A: Tensor Analysis, Integration and Lie Derivative 261
A.1 Integration Over a Curve and Covariant Vectors as Line Integrands 261
A.2 Integration Over a Surface and Contravariant Vector Densities as Surface Integrands 263
A.3 Integration Over a Volume and Scalar Densities as Volume Integrands 264
A.4 Poincaré Lemma 265
A.5 Stokes' Theorem 266
A.6 Lie Derivative 266
References 267

Appendix B: Elements of Functional Analysis 269
B.1 Function Spaces 270
 B.1.1 Metric Spaces 270
 B.1.2 Linear Spaces, Vector Spaces 272
 B.1.3 Normed Spaces 273
 B.1.4 Inner Product Spaces and Pseudo Inner Product Spaces 274
 B.1.5 Hilbert Spaces 276
 B.1.6 Finite Expansions and Best Approximation 277
 B.1.7 The Projection Theorem 278
 B.1.8 Basis of a Hilbert Space 278
B.2 Linear Operators 278
 B.2.1 Definition of a Linear Operator, Domain and Range of an Operator 278
 B.2.2 Bounded Operators and the Norm of an Operator 279
 B.2.3 Continuous Operators 279
 B.2.4 Linear Functionals 279
 B.2.5 The Riesz Representation Theorem 279
 B.2.6 Adjoint and Pseudo Adjoint Operators 280
 B.2.7 Compact Operators 280
 B.2.8 Invertible Operators, Resolvent Operator 280
 B.2.9 Self-Adjoint, Normal and Unitary Operators 281
B.3 Spectrum of a Linear Operator 281
 B.3.1 Standard Eigenvalue Problem, Spectrum and Resolvent Set 281
 B.3.2 Classification of Spectra by Operator Properties 283
B.4 Spectral Expansions and Representations 284
 B.4.1 Linear Independence of Eigenfunctions 284
 B.4.2 Spectral Theorem for Compact and Self-Adjoint Operators 285
 B.4.3 Remarks on the Relation Between Differential and Integral Operators 286
 B.4.4 A Comment on Sobolev Spaces 287
References 287
Appendix C: Some Formulas of Vector and Dyadic Calculus 289
C.1 Vector Identities 289
C.2 Dyadic Identities 290
C.3 Integral Identities 290
 C.3.1 Vector-Dyadic Green’s First Theorem 290
 C.3.2 Vector-Dyadic Green’s Second Theorem 290
 Reference 290

Appendix D: Adaption of the Integral Equations to the Conductor Geometry 291

Appendix E: The Product Integral/Matrizant 295
E.1 The Differential Equation and Its Solution 295
E.2 The Determination of the Product Integral 295
E.3 Inverse Operation 296
E.4 Calculation Rules for the Product Integral 297
 References 297

Appendix F: Solutions for Some Important Integrals 299
F.1 Integrals Involving Powers of $\sqrt{x^2 + b^2}$ 299
F.2 Integrals Involving Exponential and Power Functions 299
F.3 Integrals Involving Trigonometric and Exponential Functions 301
 Reference 302

Index 303