POWER DISTRIBUTION SYSTEM RELIABILITY
Practical Methods and Applications

Ali A. Chowdhury
Don O. Koval
CONTENTS

Preface

1 OUTLINE OF THE BOOK

1.1 Introduction
1.2 Reliability Assessment of Power Systems
 1.2.1 Generation System Reliability Assessment
 1.2.2 Transmission System Reliability Assessment
 1.2.3 Distribution System Reliability Assessment
1.3 Organization of the Chapters
1.4 Conclusions
References

2 FUNDAMENTALS OF PROBABILITY AND STATISTICS

2.1 Concept of Frequency
 2.1.1 Introduction
 2.1.2 Concept of Class
 2.1.3 Frequency Graphs
 2.1.4 Cumulative Frequency Distribution Model
2.2 Important Parameters of Frequency Distribution
 2.2.1 Mean
 2.2.2 Median
 2.2.3 Mode
 2.2.4 Standard Deviation
 2.2.5 Variance
2.3 Theory of Probability
 2.3.1 Concept
 2.3.2 Probability Laws and Theorems
2.4 Probability Distribution Model
 2.4.1 Random Variable
 2.4.2 Probability Density Function
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.3</td>
<td>Parameters of Probability Distributions</td>
<td>21</td>
</tr>
<tr>
<td>2.4.4</td>
<td>The Binomial Distribution</td>
<td>22</td>
</tr>
<tr>
<td>2.4.5</td>
<td>The Poisson Distribution</td>
<td>25</td>
</tr>
<tr>
<td>2.4.6</td>
<td>The Exponential Distribution</td>
<td>26</td>
</tr>
<tr>
<td>2.4.7</td>
<td>The Normal Distribution</td>
<td>27</td>
</tr>
<tr>
<td>2.5</td>
<td>Sampling Theory</td>
<td>29</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Concepts of Population and Sample</td>
<td>29</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Random Sampling Model</td>
<td>29</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Sampling Distributions</td>
<td>29</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Concept of Confidence Limit</td>
<td>32</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Estimation of Population Statistic</td>
<td>32</td>
</tr>
<tr>
<td>2.5.6</td>
<td>Computation of Sample Size</td>
<td>34</td>
</tr>
<tr>
<td>2.6</td>
<td>Statistical Decision Making</td>
<td>36</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Procedure of Decision Making</td>
<td>37</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Types of Error</td>
<td>37</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Control of Errors</td>
<td>42</td>
</tr>
<tr>
<td>2.7</td>
<td>Conclusions</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>42</td>
</tr>
</tbody>
</table>

3 RELIABILITY PRINCIPLES

3.1 Failure Rate Model
3.1.1 Concept and Model
3.1.2 Concept of Bathtub Curve
3.2 Concept of Reliability of Population
3.2.1 Theory of First Principles
3.2.2 Reliability Model
3.2.3 The Poisson Probability Distribution
3.2.4 Reliability of Equal Time Steps
3.3 Mean Time to Failures
3.4 Reliability of Complex Systems
3.4.1 Series Systems
3.4.2 Parallel Systems
3.4.3 Partially Redundant Systems
3.4.4 Bayes’ Theorem
3.5 Standby System Modeling
3.5.1 Background
3.5.2 Spares for One Unit
3.5.3 Spares for Multiple Interchangeable Units
3.6 Concepts of Availability and Dependability 65
 3.6.1 Mean Time to Repair 65
 3.6.2 Availability Model 66
 3.6.3 Markov Model 66
 3.6.4 Concept of Dependability 67
 3.6.5 Design Considerations 68

3.7 Reliability Measurement 68
 3.7.1 Concept 68
 3.7.2 Accuracy of Observed Data 69
 3.7.3 Confidence Limit of Failure Rate 69
 3.7.4 Chi-Square Distribution 70

3.8 Conclusions 77

References 77

4 APPLICATIONS OF SIMPLE RELIABILITY MODELS 79

4.1 Equipment Failure Mechanism 79
 4.1.1 Introduction 79
 4.1.2 Utilization of Forced Outage Statistics 80
 4.1.3 Failure Rate Computation 80

4.2 Availability of Equipment 81
 4.2.1 Availability Considerations and Requirements 81
 4.2.2 Availability Model 82
 4.2.3 Long-Run Availability 83

4.3 Oil Circuit Recloser (OCR) Maintenance Issues 85
 4.3.1 Introduction 85
 4.3.2 Study Methods 85

4.4 Distribution Pole Maintenance Practices 86

4.5 Procedures for Ground Testing 87
 4.5.1 Concept 87
 4.5.2 Statistical Methods For Ground Testing 87

4.6 Insulators Maintenance 87
 4.6.1 Background 87
 4.6.2 Inspection Program for Insulators 87
 4.6.3 Voltage Surges On Lines 88
 4.6.4 Critical Flashover 89
 4.6.5 Number of Insulators in a String 91

4.7 Customer Service Outages 93
 4.7.1 Background 93

7 DESIGNING RELIABILITY INTO INDUSTRIAL AND COMMERCIAL POWER SYSTEMS 153

7.1 Introduction 153
7.2 Example 1: Simple Radial Distribution System 154
 7.2.1 Description of a Simple Radial System 155
 7.2.2 Results: Simple Radial System Example 1 155
 7.2.3 Conclusions: Simple Radial System Example 1 155
7.3 Example 2: Reliability Analysis of a Primary Selective System to the 13.8 kV Utility Supply 156
 7.3.1 Description: Primary Selective System to the 13.8 kV Utility Supply 157
 7.3.2 Results: A Primary Selective System to the 13.8 kV Utility Supply 158
 7.3.3 Conclusions: Primary Selective System to 13.8 kV Utility Supply 159
7.4 Example 3: A Primary Selective System to the Load Side of a 13.8 kV Circuit Breaker 161
 7.4.1 Description of a Primary Selective System to the Load Side of a 13.8 kV Circuit Breaker 161
 7.4.2 Results: Primary Selective System to Load Side of 13.8 kV Circuit Breaker 162
 7.4.3 Conclusions: A Primary Selective System to the Load Side of a 13.8 kV Circuit Breaker 163
7.5 Example 4: Primary Selective System to the Primary of the Transformer 163
 7.5.1 Description of a Primary Selective System to the Primary of the Transformer 163
 7.5.2 Results: A Primary Selective System to the Primary of the Transformer 164
 7.5.3 Conclusions: Primary Selective system to Primary of Transformer 164
7.6 Example 5: A Secondary Selective System 164
 7.6.1 Description of a Secondary Selective System 164
 7.6.2 Results: A Secondary Selective System 165
 7.6.3 Conclusions: A Secondary Selective System 165
10.2 Customer-Oriented Indices
- 10.2.2 Customer-Oriented Indices 269
- 10.2.3 Classification of Interruption as to Causes 270

10.3 Historical Assessment
- 10.3.1 A Utility Corporate Level Analysis 272
- 10.3.2 Utility Region-Level Analysis 279

10.4 Crew Center-Level Analysis 282

10.5 Development of a Composite Index for Reliability Performance Analysis at the Circuit Level 282

10.6 Conclusions 283

References 283

11 DETERMINISTIC CRITERIA 285

11.1 Introduction 285

11.2 Current Distribution Planning and Design Criteria 286
- 11.2.1 Outage Data Collection and Reporting 287
- 11.2.2 Reliability Indices 287
- 11.2.3 Targets for Customer Service Reliability 288
- 11.2.4 Examples of Distribution Reliability Standards in a Deregulated Market 288

11.3 Reliability Cost Versus Reliability Benefit Trade-Offs in Distribution System Planning 290

11.4 Alternative Feed Requirements for Overhead Distribution Systems 293

11.5 Examples of Deterministic Planning Guidelines for Alternative Feed Requirements 294
- 11.5.1 Reliability of Supply to 25 kV Buses 294
- 11.5.2 Reliability of Supply to Towns/Cities 295
- 11.5.3 Reliability of Supply to Large Users and Industrial Customers 295

11.6 Value-Based Alternative Feeder Requirements Planning 295
- 11.6.1 Customer Interruption Cost Data 297
- 11.6.2 An Illustrative Example for Justification of an Alternate Feed to a Major City 298

11.7 Conclusions 299

References 299

12 IMPORTANT FACTORS RELATED TO DISTRIBUTION STANDARDS 301

12.1 Introduction 301

12.2 Relevant Issues and Factors in Establishing Distribution Reliability Standards 304
12.2.1 Data Pool 305
12.2.2 Definitions of Terms 307
12.2.3 System Characteristics 308
12.2.4 Outage Data Collection Systems 308
12.3 Performance Indices at Different System Levels of a Utility 309
12.4 Performance Indices for Different Utility Types 314
12.5 Conclusions 314
References 315

13 STANDARDS FOR REREGULATED DISTRIBUTION UTILITY 317
13.1 Introduction 317
13.2 Cost of Service Regulation versus Performance-Based Regulation 318
13.3 A Reward/Penalty Structure in the Performance-Based Rates 319
13.4 Historical SAIFI and SAIDI Data and their Distributions 322
13.5 Computation of System Risks Based on Historical Reliability Indices 323
13.6 Cause Contributions to SAIFI and SAIDI Indices 329
13.7 Conclusions 334
References 335

14 CUSTOMER INTERRUPTION COST MODELS FOR LOAD POINT RELIABILITY ASSESSMENT 337
14.1 Introduction 337
14.2 Customer Interruption Cost 338
14.3 Series and Parallel System Model Equations 339
14.4 Dedicated Distribution Radial Feeder Configuration 340
14.5 Distribution Radial Feeder Configuration Serving Multiple Customers 341
14.6 Distribution Radial Feeder Configuration Serving Multiple Customers with Manual Sectionalizing 342
14.7 Distribution Radial Feeder Configuration Serving Multiple Customers with Automatic Sectionalizing 345
14.8 Distribution System Looped Radial Feeders 347
14.8.1 Operating Procedures 347
14.9 Conclusions 355
References 355
15 VALUE-BASED PREDICTIVE RELIABILITY ASSESSMENT 357
- 15.1 Introduction 357
- 15.2 Value-Based Reliability Planning 358
- 15.3 Distribution System Configuration Characteristics 360
- 15.4 Case Studies 362
- 15.5 Illustrative Example System Problem and Its Reliability Calculations 368
 - 15.5.1 Operating Procedures 369
- 15.6 Conclusions 373
- References 374

16 ISOLATION AND RESTORATION PROCEDURES 375
- 16.1 Introduction 375
- 16.2 Distribution System Characteristics 378
 - 16.2.1 Distribution Load Transfer Characteristics 379
 - 16.2.2 Operating Procedures: Line Section Outages 380
 - 16.2.3 Feeder Circuit Reliability Data 380
 - 16.2.4 Cost of Load Point Interruptions 381
- 16.3 Case Studies 381
 - 16.3.1 Case Study 1 381
 - 16.3.2 Case Study 2 384
 - 16.3.3 Case Study 3 388
- 16.4 Major Substation Outages 389
- 16.5 Summary of Load Point Interruption Costs 391
- 16.6 Conclusions 392
- References 393

17 MESHER DISTRIBUTION SYSTEM RELIABILITY 395
- 17.1 Introduction 395
- 17.2 Value-Based Reliability Assessment in a Deregulated Environment 396
- 17.3 The Characteristics of the Illustrative Urban Distribution System 397
- 17.4 Discussion of Results 400
- 17.5 Feeder and Transformer Loading Levels 401
- 17.6 Bus and Feeder Tie Analysis 402
 - 17.6.1 Tie Costs and Descriptions 402
- 17.7 Maintenance 403
 - 17.7.1 Single Transformer 403
 - 17.7.2 Conductor Sizing 403
17.8 Feeders with Nonfused (Lateral) Three-Phase Branches 404
17.9 Feeder Tie Placement 404
17.10 Finding Optimum Section Length 406
 17.10.1 Definition of Terms 407
17.11 Feeder and Transformer Loading 408
17.12 Feeder Tie Cost Calculation 409
17.13 Effects of Tie Maintenance 410
17.14 Additional Ties for Feeders with Three-Phase Branches 411
 17.14.1 Definition of Terms 412
17.15 Conclusions 413
References 413

18 RADIAL FEEDER RECONFIGURATION ANALYSIS 415
18.1 Introduction 415
18.2 Predictive Feeder Reliability Analysis 416
18.3 Reliability Data and Assumptions 418
18.4 Reliability Assessment for an Illustrative Distribution Feeder 419
 18.4.1 Base Case Circuit Description 419
 18.4.2 Circuit Tie 47-2 419
 18.4.3 Circuit Tie 46-1 420
 18.4.4 Circuit Tie 43-2 421
 18.4.5 Circuit Tie 102-3 421
 18.4.6 Base Case Reliability 421
18.5 Alternative Improvement Options Analysis 422
 18.5.1 Incremental Improvement Alternative 1: Add Distribution Automation Switch 422
 18.5.2 Incremental Improvement Alternative 2: Add Sectionalizing Switch 423
 18.5.3 Incremental Alternative 3: Relocate Recloser 255 424
 18.5.4 Incremental Improvement Alternative 4: Place 2 New Switches 425
18.6 Summary of the Illustrative Feeder Reliability Performance Improvement Alternatives 425
18.7 Conclusions 426
References 426

19 DISTRIBUTED GENERATION 427
19.1 Introduction 427
19.2 Problem Definition 428
19.3 Illustrative Distribution System Configuration Characteristics 430
19.4 Reliability Assessment Model 432
 19.4.1 Reliability Indices 433
 19.4.2 Reliability Data 433
19.5 Discussion of Results 433
 19.5.1 Equivalent Distributed Generation Reinforcement Alternative 434
19.6 Conclusions 438
References 438

20 MODELS FOR SPARE EQUIPMENT 441
20.1 Introduction 441
20.2 Development of Probabilistic Models for Determining Optimal Number of Transformer Spares 442
 20.2.1 Reliability Criterion Model for Determining the Optimal Number of Transformer Spares 442
 20.2.2 Mean Time Between Failures (MTBF) Criterion Model for Determining the Optimal Number of Transformer Spares 443
 20.2.3 Determination of Optimal Transformer Spares Based on the Model of Statistical Economics 444
20.3 Optimal Transformer Spares for Illustrative 72 kV Distribution Transformer Systems 445
 20.3.1 Determination of Optimal Transformer Spares Based on the Minimum Reliability Criterion 446
 20.3.2 Determination of Optimal Transformer Spares Based on the Minimum MTBF Criterion 447
 20.3.3 Determination of Optimal Transformer Spares Based on the Criterion of Statistical Economics 448
20.4 Conclusions 450
References 451

21 VOLTAGE SAGS AND SURGES AT INDUSTRIAL AND COMMERCIAL SITES 453
21.1 Introduction 453
 21.2.1 Typical Range for Input Power Quality and Load Parameters of Major Computer Manufacturers 454
 21.2.2 Typical Design Goals of Power Conscious Computer Manufacturers (Often Called the CBEMA Curve) 454
 21.3.1 Background 455
21.3.2 Case Study: Radial Distribution System 459
21.4 Frequency of Voltage Sags 461
 21.4.1 Industrial Customer Group 462
 21.4.2 Commercial Customer Group 463
21.5 Example Voltage Sag Problem: Voltage Sag Analysis of Utility and Industrial Distribution Systems 464
 21.5.1 Utility Distribution Systems 464
 21.5.2 Industrial Distribution System 470
21.6 Frequency and Duration of Voltage Sags and Surges at Industrial Sites: Canadian National Power Quality Survey 472
 21.6.1 Background 472
 21.6.2 Voltage Sags and Surges (Time of Day) 473
 21.6.3 Voltage Sags and Surges (Day of Week) 475
 21.6.4 Frequency of Disturbances Monitored on Primary and Secondary Sides of Industrial Sites 478
21.7 Scatter Plots of Voltage Sag Levels as a Function of Duration 479
21.8 Scatter Plots of Voltage Surge Levels as a Function of Duration 479
21.9 Primary and Secondary Voltage Sages Statistical Characteristics 480
21.10 Primary and Secondary Voltage Surges Statistical Characteristics 481
21.11 Conclusions 486
References 486

SELECTED PROBLEMS AND ANSWERS 489
Problem Set for Chapters 2 and 3 489
 Answers to Problem Set for Chapters 2 and 3 493
Problem Set for Chapter 4 494
 Answers to Problem Set for Chapter 4 496
Problem Set for Chapter 5 497
 Answers to Problem Set for Chapter 5 497
Problem Set for Chapter 6 498
 Answers to Problem Set for Chapter 6 504
Problem Set for Chapter 7 505
 Answers to Problem Set for Chapter 7 509
Problem Set for Chapter 8 510
 Answers to Problem Set for Chapter 8 512
Problem Set for Chapter 21 512
 Answers to Problem Set for Chapter 21 516

Index 519