ERROR CONTROL CODING FOR B3G/4G WIRELESS SYSTEMS

PAVING THE WAY TO IMT-ADVANCED STANDARDS

Edited by

Dr. Thierry Lestable
SAGEMCOM, France (formerly with Samsung Electronics)

Dr. Moshe Ran
H.I.T – Holon Institute of Technology, Israel
Contents

About the Editors xi
Contributors xiii
Preface xv
Acknowledgments xvii
Abbreviations xix
1 Coding 1

(Gerhard Bauch, Claude Berrou, David Declercq, Alexandre Graell I Amat, Youssouf Ould-Cheikh-Mouhamedou, Yannick Saouter, Jossy Sayir, and Marcos B.S. Tavares)

1.1 General Code Types 1
1.2 DesigningCodes Based on Graphs 7
1.3 Pseudorandom Designs 8
1.3.1 Pseudorandom Designs for Turbo Codes 8
1.3.2 Structured Designs 14
1.3.3 Code Optimization 22
1.4 Repeat Accumulate Codes 25
1.5 Binary versus Nonbinary 28
1.6 Performance Results of Nonbinary LDPC Codes 30
1.6.1 Small Codeword Lengths 30
1.6.2 High-Order Modulations 31
1.6.3 Brief Presentation of NB-LDPC Decoders 33
1.7 Three-Dimensional (3D) Turbo Codes 34
1.7.1 The Encoding Structure 35
1.7.2 Code Optimization 37
1.7.3 Decoding the 3D Turbo Code 42
1.7.4 Simulation Results 43
1.8 Conclusions 45
References 46
2 Decoding

(Moshe Ran, Carlos De Segovia, and Omer Ran)

2.1 Algebraic Soft-Decision (ASD) and Reliability-Based Decoders 50
 2.1.1 Reliability-Based Soft-Decision Decoding 51
 2.1.2 Adaptive Iterative Soft-Decision Decoders for Short Packet Lengths 54
 2.1.3 Algebraic Soft-Decision and Reed–Solomon Codes 61
2.2 Graph versus Trellis Decoding Algorithms 63
 2.2.1 BP-Based Algorithms 63
 2.2.2 BCJR-Based Algorithms 64

References 65

3 Incremental Redundancy for Coding

(Stefania Sesia and Charly Poulliat)

3.1 Introduction 69
3.2 Retransmission Protocols (ARQ) 70
 3.2.1 Stop-and-Wait ARQ Protocol 70
 3.2.2 Go-Back-N ARQ Protocol 73
 3.2.3 Selective Repeat (SR) ARQ Protocol 74
 3.2.4 Summary and Challenges 75
3.3 HARQ Schemes 76
 3.3.1 Type I HARQ 76
 3.3.2 Type II HARQ 78
 3.3.3 Comparison in Terms of Buffer Requirements 80
3.4 Design of Hybrid ARQ Type II 81
 3.4.1 Mathematical System Model 81
 3.4.2 Throughput Analysis 83
3.5 Code Design 86
 3.5.1 Rate-Compatible Punctured (RCP) Convolutional Codes 88
 3.5.2 Rate-Compatible Punctured Turbo Codes 89
 3.5.3 Fountain and Raptor Codes 90
 3.5.4 Low-Density Parity-Check Codes 96
3.6 Generalization of the Mutual Information Evolution for Incremental Redundancy Protocols 99
 3.6.1 Complexity for Iterative Decoding Schemes in the Context of Incremental Redundancy Protocols 101
3.7 ARQ/HARQ in the Standards 102
 3.7.1 Retransmission Protocols in 3GPP Standard 103
 3.7.2 Retransmission Protocols in Non-3GPP Standard 106
3.8 Conclusions 107

References 107
4 Architecture and Hardware Requirements

(Frank Kienle)

4.1 Turbo Decoder Implementation
 4.1.1 Interleaver and Deinterleaver
 4.1.2 Serial Turbo Decoding
 4.1.3 Parallel and Shuffled Turbo Decoding
 4.1.4 Turbo Decoding with Parallel Component Decoder
 4.1.5 MAP Decoder
 4.1.6 Branch Metric Calculation
 4.1.7 State and Path Metrics
 4.1.8 Duobinary Codes
 4.1.9 Quantization
 4.1.10 Normalization
 4.1.11 Implementation Results

4.2 LDPC Decoder Architectures
 4.2.1 Generic Architecture Template
 4.2.2 Two-Phase Architecture
 4.2.3 Two-Phase Architecture with PN Branch
 4.2.4 Single-Phase Architecture
 4.2.5 Layered Architecture
 4.2.6 Other Architecture Concepts
 4.2.7 Considering Throughput and Latency
 4.2.8 Considering VLSI Complexity
 4.2.9 Considering Communications Performance
 4.2.10 The LDPC Code Decoder Design Space
 4.2.11 Architecture Parallelism
 4.2.12 Traveling the Design Space
 4.2.13 Implementation Issues
 4.2.14 FPGA Implementation
 4.2.15 ASIC Implementation
 4.2.16 Power and Energy Issues
 4.2.17 Design Studies

References

5 Turbo-Principle Extensions

(Isabelle Siaud, Ming Jiang, Anne-Marie Ulmer-Moll, Maryline Hélard, Thierry Lestable, and Carlos De Segovia)

5.1 Introduction
5.2 From Turbo Code to Advanced Iterative Receivers
 5.2.1 From Turbo Code to Turbo Equalization
 5.2.2 Turbo-Equalization Principle
 5.2.3 Turbo Equalization Applied to Iterative Receiver
5.3 Turbo-Based Interleaving Techniques
 5.3.1 General Principles of the Algorithm
 5.3.2 Mathematical Description
 5.3.3 Performance as Inner Interleaving to Turbo-FEC Structure
 5.3.4 Performance as Outer Binary Interleaving
 5.3.5 Performance as Dynamic Subcarrier Mapping Allocation
5.4 Turbo-MIMO Techniques
 5.4.1 Introduction
 5.4.2 System Overview
 5.4.3 Genetically Inspired Optimization
 5.4.4 Turbo MIMO-OFDM Receiver using GA-Aided Iterative Channel Estimation
 5.4.5 Simulation Results
5.5 Conclusions
References

6 Standardization
(Marie-Hélène Hamon, Thierry Lestable, and Isabelle Siaud)

6.1 3GPP Systems: UMTS and LTE
6.2 IEEE 802.16/WiMAX
6.3 IEEE 802.11n
6.4 Satellite (DVB-RCS, DVB-S2)
6.5 Wireless Rural Area Network: The IEEE802.22 standard [IEEE802_22]
 6.5.1 FEC Coding
 6.5.2 Outing Interleaving
6.6 Others
References

Index