High Efficiency RF and Microwave Solid State Power Amplifiers

Paolo Colantonio, Franco Giannini, and Ernesto Limiti

Department of Electronic Engineering, University of Roma, Tor Vergata, Italy
Contents

Preface xi
About the Authors xiii
Acknowledgments xv

1 Power Amplifier Fundamentals 1
 1.1 Introduction 1
 1.2 Definition of Power Amplifier Parameters 2
 1.3 Distortion Parameters
 1.3.1 Harmonic Distortion 9
 1.3.2 AM-AM/AM-PM 10
 1.3.3 Two-tone Intermodulation 10
 1.3.4 Intercept Point IPn 13
 1.3.5 Carrier to Intermodulation Ratio 14
 1.3.6 Spurious Free Dynamic Range 15
 1.3.7 Adjacent Channel Power Ratio 15
 1.3.8 Noise and Co-Channel Power Ratio (NPR and CCPR) 17
 1.3.9 Multi-tone Intermodulation Ratio 19
 1.3.10 Error Vector Magnitude 20
 1.4 Power Match Condition 20
 1.5 Class of Operation 23
 1.6 Overview of Semiconductors for PAs 25
 1.7 Devices for PA
 1.7.1 Requirements for Power Devices 29
 1.7.2 BJT 31
 1.7.3 HBT 32
 1.7.4 FET 32
 1.7.5 MOSFET 33
 1.7.6 LDMOS 34
 1.7.7 MESFET 35
 1.7.8 HEMT 37
 1.7.9 General Remarks 40
 1.8 Appendix: Demonstration of Useful Relationships 42
 1.9 References 44
2 Power Amplifier Design
 2.1 Introduction 49
 2.2 Design Flow 49
 2.3 Simplified Approaches 57
 2.4 The Tuned Load Amplifier 63
 2.5 Sample Design of a Tuned Load PA 71
 2.6 References 82

3 Nonlinear Analysis for Power Amplifiers
 3.1 Introduction 85
 3.2 Linear vs. Nonlinear Circuits 87
 3.3 Time Domain Integration 88
 3.3.1 Iterative Algorithm (Newton–Raphson and Fixed-point) 91
 3.4 Example 92
 3.4.1 Forward Euler Solution 94
 3.4.2 Backward Euler Solution 94
 3.4.3 Steady-state Analysis and Shooting Method 98
 3.4.4 Example 99
 3.5 Solution by Series Expansion 101
 3.6 The Volterra Series 101
 3.6.1 Response to a Single-tone Excitation 103
 3.6.2 Response to a Two-tone Excitation 104
 3.6.3 The Probing Method 106
 3.6.4 Example 107
 3.6.5 Cascade of Systems 110
 3.7 The Fourier Series 113
 3.8 The Harmonic Balance 114
 3.8.1 Example 120
 3.8.2 Multi-tone HB Analysis 122
 3.9 Envelope Analysis 123
 3.10 Spectral Balance 125
 3.11 Large Signal Stability Issue 126
 3.12 References 127

4 Load Pull
 4.1 Introduction 131
 4.2 Passive Source/Load Pull Measurement Systems 132
 4.3 Active Source/Load Pull Measurement Systems 137
 4.3.1 Two-signal Path Technique 138
 4.3.2 Active Loop Technique 138
 4.4 Measurement Test-sets 143
 4.4.1 Scalar Systems 143
 4.4.2 VNA Based Systems 146
 4.4.3 Six-port Reflectometer Based Systems 148
 4.5 Advanced Load Pull Measurements 151
 4.5.1 Intermodulation Measurements 151
 4.5.2 Time-domain Waveform Load Pull 153
 4.5.3 Pulsed Load Pull 156
 4.6 Source/Load Pull Characterization 156
Contents

7.4 Bias Level Selection 280
7.5 Class F Output Matching Network Design 286
7.6 Class F Design Examples 289
7.7 References 295

8 High Frequency Harmonic Tuned Power Amplifiers 297
8.1 Introduction 297
8.2 Theory of Harmonic Tuned PA Design 298
8.3 Input Device Nonlinear Phenomena: Theoretical Analysis 303
8.4 Input Device Nonlinear Phenomena: Experimental Results 309
8.5 Output Device Nonlinear Phenomena 316
8.6 Design of a Second HT Power Amplifier 321
8.7 Design of a Second and Third HT Power Amplifier 328
8.8 Example of 2nd HT GaN PA 335
8.9 Final Remarks 336
8.10 References 339

9 High Linearity in Efficient Power Amplifiers 341
9.1 Introduction 341
9.2 Systems Classification 342
9.3 Linearity Issue 345
9.4 Bias Point Influence on IMD 347
9.5 Harmonic Loading Effects on IMD 352
 9.5.1 High Linearity and High Efficiency PA Design Process 354
 9.5.2 High Linearity and High Efficiency PA Design Example 358
9.6 Appendix: Volterra Analysis Example 362
9.7 References 365

10 Power Combining 369
10.1 Introduction 369
10.2 Device Scaling Properties 370
10.3 Power Budget 371
10.4 Power Combiner Classification 373
10.5 The T-junction Power Divider 377
 10.5.1 Resistive Divider 379
10.6 Wilkinson Combiner 380
 10.6.1 Two-way Equal Splitter Wilkinson Combiner/divider 383
 10.6.2 Two-way Unequal Splitter Wilkinson Combiner/divider 385
 10.6.3 Two-way Wilkinson with Arbitrary Impedances 386
 10.6.4 Other Two-way Wilkinson Structures 387
 10.6.5 Planarization of N-way Wilkinson Splitter/combiner 388
 10.6.6 Design Considerations on Wilkinson Splitter/combiner 391
10.7 The Quadrature (90°) Hybrid 395
 10.7.1 Branch-line 395
 10.7.2 Coupled Line Directional Couplers 400
 10.7.3 The Lange Coupler 404
10.8 The 180° Hybrid (Ring Coupler or Rat-race) 405
10.9 Bus-bar Combiner 407