LECTURE NOTES ON
PRINCIPLES OF
PLASMA PROCESSING

Francis F. Chen
Electrical Engineering Department

and

Jane P. Chang
Chemical Engineering Department

University of California
Los Angeles, California

Springer
Plasma Physics

PART A1: INTRODUCTION TO PLASMA SCIENCE

I. **What is a plasma?** 1

II. **Plasma fundamentals** 3

 1. Quasineutrality and Debye length
 2. Plasma frequency and acoustic velocity
 3. Larmor radius and cyclotron frequency
 4. \(E \times B\) drift
 5. Sheaths and presheaths

PART A2: INTRODUCTION TO GAS DISCHARGES

III. **Gas discharge fundamentals** 11

 1. Collision cross section and mean free path
 2. Ionization and excitation cross sections
 3. Coulomb collisions; resistivity
 4. Transition between neutral- and ion-dominated electron collisions
 5. Mobility, diffusion, ambipolar diffusion
 6. Magnetic field effects; magnetic buckets

 Cross section data 21

PART A3: PLASMA SOURCES I

IV. **Introduction to plasma sources** 25

 1. Desirable characteristics of plasma processing sources
 2. Elements of a plasma source

PART A4: PLASMA SOURCES II

V. **RIE discharges** 31

 1. Debye sheath
 2. Child-Langmuir sheath
 3. Applying a DC bias
 4. Applying an RF bias
 5. Displacement current
 6. Ion dynamics in the sheath
 7. Other effects in RIE reactors
 8. Disadvantages of RIE reactors
 9. Modified RIE devices

Plasma Chemistry

PART B1: OVERVIEW OF PLASMA PROCESSING IN MICROELECTRONICS FABRICATION

I. **Plasma processing** 99

II. **Applications in Microelectronics** 100

PART B2: KINETIC THEORY AND COLLISIONS

I. **Kinetic theory** 103

II. **Practical gas kinetic models and macroscopic properties** 109

 1. Maxwell-Boltzmann distribution (MBD)
 2. A simplified gas model (SGM)
 3. Energy content
 4. Collision rate between molecules
 5. Mean free path
 6. Flux of gas particles on a surface
 7. Gas pressure
 8. Transport properties
 9. Gas flow

III. **Collision dynamics** 119

 1. Collision cross sections
 2. Energy transfer
 3. Inelastic collisions

PART B3: ATOMIC COLLISIONS AND SPECTRA

I. **Atomic energy levels** 125

II. **Atomic collisions** 126

 1. Excitation processes
 2. Relaxation and recombination processes

III. **Elastic collisions** 129

 1. Coulomb collisions
 2. Polarization scattering

IV. **Inelastic collisions** 130

 1. Constraints on electronic transitions
 2. Identification of atomic spectra
 3. A simplified model
<table>
<thead>
<tr>
<th>PART A5: PLASMA SOURCES III</th>
<th>PART B4: MOLECULAR COLLISIONS AND SPECTRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI. ECR sources 47</td>
<td>I. Molecular energy levels 137</td>
</tr>
<tr>
<td>VII. Inductively coupled plasmas (ICPs) 49</td>
<td>II. Selection rule for optical emission of molecules 139</td>
</tr>
<tr>
<td>1. Overview of ICPs</td>
<td>III. Electron collisions with molecules 140</td>
</tr>
<tr>
<td>2. Normal skin depth</td>
<td>1. Frank-Condon principle</td>
</tr>
<tr>
<td>3. Anomalous skin depth</td>
<td>2. Dissociation</td>
</tr>
<tr>
<td>4. Ionization energy</td>
<td>3. Dissociative ionization</td>
</tr>
<tr>
<td>5. Transformer coupled plasmas (TCPs)</td>
<td>4. Dissociative recombination</td>
</tr>
<tr>
<td>6. Matching circuits</td>
<td>5. Dissociative electron attachment</td>
</tr>
<tr>
<td>7. Electrostatic chucks (ESCs)</td>
<td>6. Electron impact detachment</td>
</tr>
<tr>
<td></td>
<td>7. Vibrational and rotational excitation</td>
</tr>
<tr>
<td></td>
<td>IV. Heavy particle collisions 142</td>
</tr>
<tr>
<td></td>
<td>V. Gas phase kinetics 143</td>
</tr>
<tr>
<td></td>
<td>PART B5: PLASMA DIAGNOSTICS</td>
</tr>
<tr>
<td></td>
<td>I. Optical emission spectroscopy 151</td>
</tr>
<tr>
<td></td>
<td>II. Laser induced fluorescence 161</td>
</tr>
<tr>
<td></td>
<td>III. Laser interferometry 162</td>
</tr>
<tr>
<td></td>
<td>IV. Full-wafer interferometry 163</td>
</tr>
<tr>
<td></td>
<td>V. Mass spectrometry 164</td>
</tr>
<tr>
<td></td>
<td>PART B6: PLASMA SURFACE KINETICS</td>
</tr>
<tr>
<td></td>
<td>I. Plasma chemistry 167</td>
</tr>
<tr>
<td></td>
<td>II. Surface reactions 167</td>
</tr>
<tr>
<td></td>
<td>1. Spontaneous surface etching</td>
</tr>
<tr>
<td></td>
<td>2. Spontaneous deposition</td>
</tr>
<tr>
<td></td>
<td>3. Ion sputtering kinetics</td>
</tr>
<tr>
<td></td>
<td>4. Ion-enhanced chemical etching</td>
</tr>
<tr>
<td></td>
<td>III. Loading 177</td>
</tr>
<tr>
<td></td>
<td>IV. Selectivity 178</td>
</tr>
<tr>
<td></td>
<td>V. Detailed reaction modeling 179</td>
</tr>
</tbody>
</table>