Molecular Nano Dynamics

Volume II: Active Surfaces, Single Crystals and Single Biocells

Edited by
Hiroshi Fukumura, Masahiro Irie, Yasuhiro Iwasawa, Hiroshi Masuhara, and Kohei Uosaki

WILEY-VCH Verlag GmbH & Co. KGaA
Contents to Volume 2

Contents to Volume 1 XV
Preface XVII
About the Editors XIX
List of Contributors for Both Volumes XXIII

Part Three Active Surfaces 315

18 The Genesis and Principle of Catalysis at Oxide Surfaces: Surface-Mediated Dynamic Aspects of Catalytic Dehydration and Dehydrogenation on TiO$_2$(110) by STM and DFT 317
Yohei Uemura, Toshiaki Taniike, Takehiko Sasaki, Mizuki Tada, and Yasuhiro Iwasawa
18.1 Introduction 317
18.2 Experimental 318
18.2.1 STM Measurements of TiO$_2$(110) 318
18.2.2 Computational Methods 318
18.3 Results and Discussion 319
18.3.1 Dynamic Mechanism for Catalytic Dehydration of Formic Acid on a TiO$_2$(110) Surface, Much Different from the Traditional Static Acid Catalysis 319
18.3.2 Dynamic Catalytic Dehydrogenation of Formic Acid on a TiO$_2$(110) Surface 327
18.3.2.1 Mechanism of the Switchover of Reaction Paths 331
18.4 Conclusion and Perspective 332
References 333

19 Nuclear Wavepacket Dynamics at Surfaces 337
Kazuya Watanabe
19.1 Introduction 337
19.2 Experimental Techniques 338
19.2.1 Time-Resolved Two-Photon Photoemission with Femtosecond Laser Pulses 338
19.2.1.1 Principles 338
19.2.1.2 Experimental Set-Up 339
19.2.2 Time-Resolved Second Harmonic Generation 340
19.2.2.1 Principles and Brief History 340
19.2.2.2 Experimental Set-Up 341
19.3 Nuclear Wavepacket Motions of Adsorbate Probed by Time-Resolved 2PPE 343
19.3.1 Alkali Atom Desorption from a Metal Surface 343
19.3.2 Solvation Dynamics at Metal Surfaces 344
19.3.3 Ultrafast Proton-Coupled Electron Transfer at Interfaces 345
19.4 Nuclear Wavepacket Motion at Surfaces Probed by Time-Resolved SHG 345
19.4.1 Vibrational Coherence and Coherent Phonons at Alkali-Covered Metal Surfaces 345
19.4.2 Dephasing of the Vibrational Coherence: Excitation Fluence Dependence 347
19.4.3 Excitation Mechanisms 349
19.4.4 Mode Selective Excitation of Coherent Surface Phonons 351
19.5 Concluding Remarks 352
References 353

20 Theoretical Aspects of Charge Transfer/Transport at Interfaces and Reaction Dynamics 357
Hisao Nakamura and Koichi Yamashita
20.1 Introduction and Theoretical Concepts 357
20.1.1 Introduction 357
20.1.2 Molecular Orbital Theory and Band Theory 358
20.1.3 Charge Transfer vs. Charge Transport 359
20.1.4 Electronic Excitation 361
20.1.5 Reaction Dynamics 363
20.2 Electrode–Molecule–Electrode Junctions 365
20.2.1 Nonequilibrium Green’s Function Formalism 365
20.2.2 Efficient MO Approach 367
20.2.3 Ab Initio Calculations: Single Molecular Conductance and Waveguide Effects 370
20.2.4 Inelastic Transport and Inelastic Electron Tunneling Spectroscopy 375
20.3 Photochemistry on Surfaces 381
20.3.1 Theoretical Model of Hot Electron Transport and Reaction Probability 381
20.3.2 Photodesorption Mechanism of Nitric Oxide on an Ag(111) Surface 384
20.4 Summary and Outlook 392
References 394
21 Dynamic Behavior of Active Ag Species in NOx Reduction on Ag/Al$_2$O$_3$ 401
Atsushi Satsuma and Ken-ichi Shimizu
21.1 Introduction 401
21.1.1 NOx Reduction Technologies for Diesel and Lean-Burn Gasoline Engines 401
21.1.2 Selective Catalytic Reduction of NOx by Hydrocarbons Over Ag/Al$_2$O$_3$ 402
21.2 Hydrogen Effect of HC-SCR Over Ag/Al$_2$O$_3$ 403
21.2.1 Boosting of HC-SCR Activity of Ag/Al$_2$O$_3$ by Addition of H$_2$ 403
21.2.2 Surface Dynamics of Ag Species Analyzed by in situ UV-Vis 405
21.3 The Role of Surface Adsorbed Species Analyzed by in situ FTIR 410
21.3.1 Reaction Scheme of HC-SCR Over Ag/Al$_2$O$_3$ 410
21.3.2 Effect of H$_2$ Addition on Reaction Pathways of HC-SCR Over Ag/Al$_2$O$_3$ 414
21.4 Relation Between Ag Cluster and Oxidative Activation of Hydrocarbons 416
21.4.1 Debates on Role of Ag Clusters 416
21.4.2 Reductive Activation of O$_2$ and Promoted HC-SCR on Ag Cluster 420
References 422

22 Dynamic Structural Change of Pd Induced by Interaction with Zeolites Studied by Means of Dispersive and Quick XAFS 427
Kazu Okumura
22.1 Introduction 427
22.2 Formation and Structure of Highly Dispersed PdO Interacted with Bronsted Acid Sites 428
22.3 Energy-Dispersive XAFS Studies on the Spontaneous Dispersion of PdO and Reversible Formation of Stable Pd Clusters in H-ZSM-5 and H-Mordenite 430
22.4 In Situ QXAFS Studies on the Dynamic Coalescence and Dispersion Processes of Pd in USY Zeolite 432
22.5 Time-Resolved EXAFS Measurement of the Stepwise Clustering Process of Pd Clusters at Room Temperature 435
22.6 Summary 438
References 439

Part Four Single Crystals 441

23 Morphology Changes of Photochromic Single Crystals 443
Seiya Kobatake and Masahiro Irie
23.1 Introduction 443
23.2 Photochromic Diarylethene Crystals 444
23.3 X-Ray Crystallographic Analysis 444
23.4 Reactivity in the Crystal 447
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.5</td>
<td>Photomechanical Effect 448</td>
<td></td>
</tr>
<tr>
<td>23.6</td>
<td>Crystal Surface Changes 449</td>
<td></td>
</tr>
<tr>
<td>23.7</td>
<td>Photoreversible Crystal Shape Changes 450</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References 454</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Direct Observation of Change in Crystal Structures During Solid-State Reactions of 1,3-Diene Compounds 459</td>
<td></td>
</tr>
<tr>
<td>24.1</td>
<td>Introduction 459</td>
<td></td>
</tr>
<tr>
<td>24.1.1</td>
<td>Crystal Engineering Renaissance 459</td>
<td></td>
</tr>
<tr>
<td>24.2</td>
<td>EZ-Photoisomerization 460</td>
<td></td>
</tr>
<tr>
<td>24.2.1</td>
<td>Model of Photoisomerization 460</td>
<td></td>
</tr>
<tr>
<td>24.2.2</td>
<td>Photoisomerization of Benzyl Muconate 462</td>
<td></td>
</tr>
<tr>
<td>24.2.3</td>
<td>Change in Crystal Structures During Photoisomerization 463</td>
<td></td>
</tr>
<tr>
<td>24.3</td>
<td>[2 + 2] Photodimerization 465</td>
<td></td>
</tr>
<tr>
<td>24.3.1</td>
<td>[2 + 2] Photodimerization of 1,3-Dienes 465</td>
<td></td>
</tr>
<tr>
<td>24.3.2</td>
<td>[2 + 2] Photodimerization of Benzyl Muconates 465</td>
<td></td>
</tr>
<tr>
<td>24.4</td>
<td>Topochemical Polymerization 469</td>
<td></td>
</tr>
<tr>
<td>24.4.1</td>
<td>Features of Topochemical Polymerization 469</td>
<td></td>
</tr>
<tr>
<td>24.4.2</td>
<td>Monomer Stacking Structure and Polymerization Reactivity 470</td>
<td></td>
</tr>
<tr>
<td>24.4.3</td>
<td>Shrinking and Expanding Crystals 473</td>
<td></td>
</tr>
<tr>
<td>24.4.4</td>
<td>Accumulation and Release of Strain During Polymerization 474</td>
<td></td>
</tr>
<tr>
<td>24.4.5</td>
<td>Homogeneous and Heterogeneous Polymerizations 476</td>
<td></td>
</tr>
<tr>
<td>24.5</td>
<td>Conclusion 480</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References 481</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Reaction Dynamics Studies on Crystalline-State Photochromism of Rhodium Dithionite Complexes 487</td>
<td></td>
</tr>
<tr>
<td>25.1</td>
<td>Introduction 487</td>
<td></td>
</tr>
<tr>
<td>25.2</td>
<td>Photochromism of Rhodium Dithionite Complexes 488</td>
<td></td>
</tr>
<tr>
<td>25.3</td>
<td>Reaction Dynamics of Crystalline-State Photochromism 490</td>
<td></td>
</tr>
<tr>
<td>25.3.1</td>
<td>Dynamics of Molecular Structural Changes in Single Crystals 490</td>
<td></td>
</tr>
<tr>
<td>25.3.2</td>
<td>Dynamics of Reaction Cavities in a Crystalline-State Reaction 495</td>
<td></td>
</tr>
<tr>
<td>25.3.3</td>
<td>Dynamics of Surface Morphology Changes of Photochromic Single Crystals 498</td>
<td></td>
</tr>
<tr>
<td>25.4</td>
<td>Summary 499</td>
<td></td>
</tr>
<tr>
<td></td>
<td>References 500</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Dynamics in Organic Inclusion Crystals of Steroids and Primary Ammonium Salts 505</td>
<td></td>
</tr>
<tr>
<td>26.1</td>
<td>Introduction 505</td>
<td></td>
</tr>
<tr>
<td>26.2</td>
<td>Dynamics of Steroidal Inclusion Crystals 506</td>
<td></td>
</tr>
<tr>
<td>26.2.1</td>
<td>Guest-Responsive Molecular Assemblies 506</td>
<td></td>
</tr>
</tbody>
</table>
26.2.2 Intercalation in Steroidal Bilayer Crystals 508
26.2.3 Guest Fit Through Weak Non-Covalent Bonds 510
26.3 Dynamics of Organic Crystals of Primary Ammonium Salts 512
26.3.1 Solid-State Fluorescence Emission 512
26.3.2 Hydrogen Bond Clusters 514
26.4 Dynamical Expression of Molecular Information in Organic Crystals 516
26.4.1 Hierarchical Structures with Supramolecular Chirality 516
26.4.2 Expression of Supramolecular Chirality in Hierarchical Assemblies 517
26.4.2.1 Three-Axial Chirality 517
26.4.2.2 Tilt Chirality 518
26.4.2.3 Helical and Bundle Chirality in a 2₁ Assembly 519
26.4.3 Supramolecular Chirality of Hydrogen Bonding Networks 520
26.4.4 Expression of Molecular Information 522
26.5 Conclusion and Perspectives 523

27 Morphology Changes of Organic Crystals by Single-Crystal-to-Single-Crystal Photocyclization 527
 Hideko Koshima
27.1 Introduction 527
27.2 Surface Morphology Changes in the Salt Crystals of a Diisopropylbenzophenone Derivative with Amines via Single-Crystal-to-Single-Crystal Photocyclization 528
27.2.1 Solid-State Photocyclization 528
27.2.2 Crystal Structures and the Reaction Mechanism 529
27.2.3 Morphology Changes in Bulk Crystals 531
27.2.4 Morphology Changes in Microcrystals 532
27.2.5 Correlation between the Morphology Changes and the Crystal Structural Changes 535
27.3 Morphology Changes in Triisobenzophenone Crystals via Diastereospecific Single-Crystal-to-Single-Crystal Photocyclization 537
27.3.1 Solid-State Photocyclization and the Crystal Structures 537
27.3.2 Morphology Changes 539
27.4 Concluding Remarks 541
 References 541

Part Five Single Biocells 545

28 Femtosecond Laser Tsunami Processing and Light Scattering Spectroscopic Imaging of Single Animal Cells 547
 Hiroshi Masuhara, Yoichiro Hosokawa, Takayuki Uwada,
 Guillaume Louit, and Tsuyoshi Asahi
28.1 Introduction 547
28.2 Femtosecond Laser Ablation and Generated Impulsive Force in Water: Laser Tsunami 548
28.2.1 Manipulation of a Single Polymer Bead by Laser Tsunami 551
28.2.2 Manipulation of Single Animal Cells by Laser Tsunami 554
28.2.3 Modification and Regeneration Process in Single Animal Cells by Laser Tsunami 556
28.2.4 Injection of Nanoparticles into Single Animal Cells by the Laser Tsunami 558
28.3 Development of Rayleigh Light Scattering Spectroscopy/Imaging System and its Application to Single Animal Cells 561
28.4 Summary 565
References 566

29 Super-Resolution Infrared Microspectroscopy for Single Cells 571
Makoto Sakai, Keiichi Inoue, and Masaaki Fujii
29.1 Introduction 571
29.1.1 Infrared Microscopy 571
29.1.2 Super-Resolution Microscopy by Two-Color Double Resonance Spectroscopy 571
29.1.3 Transient Fluorescence Detected IR Spectroscopy 572
29.1.4 Application to Super-Resolution Infrared Microscopy 573
29.2 Experimental Set-Up for Super-Resolution Infrared Microscopy 574
29.2.1 Picosecond Laser System 574
29.2.2 Fluorescence Detection System 574
29.2.2.1 Optical Layout for the Solution and Fluorescent Beads 574
29.2.2.2 Optical Layout for Biological Samples 575
29.2.3 Sample 576
29.3 Results and Discussion 576
29.3.1 Transient Fluorescence Image with IR Super-Resolution in Solution 576
29.3.2 Picosecond Time-Resolved Measurement 578
29.3.3 Application to Fluorescent Beads 579
29.3.4 Application to Whole Cells 581
29.3.4.1 Super-Resolution IR Imaging of Arabidopsis thaliana Roots 581
29.3.4.2 Vibrational Relaxation Dynamics in the Cells 582
29.4 Summary 584
References 585

30 Three-Dimensional High-Resolution Microspectroscopic Study of Environment-Sensitive Photosynthetic Membranes 589
Shigeichi Kumazaki, Makotoh Hasegawa, Mohammad Ghoneim, Takahiko Yoshida, Masahide Terazima, Takashi Shiina, and Isamu Ikegami
30.1 Introduction 589
30.1.1 Thylakoid Membranes of Oxygenic Photosynthesis 589
30.1.2 Thylakoid Membranes in Chloroplasts 590
30.1.3 Thylakoid Membrane of Cyanobacteria 590
30.1.4 Applications of Fluorescence Microscopy to a Thylakoid Membrane 590
30.1.5 Simultaneous Spectral Imaging and its Merits 591
30.2 Spectral Fluorescence Imaging of Thylakoid Membrane 592
30.2.1 Realization of Fast Broadband Spectral Acquisition in Two-Photon Excitation Fluorescence Imaging 592
30.2.2 Spectral Imaging of a Filamentous Cyanobacterium, *Anabaena* 594
30.2.2.1 Thylakoid Membrane of Cyanobacterium 594
30.2.2.2 Stability of the *Anabaena* Fluorescence Spectra Under Photoautotrophic Conditions 594
30.2.2.3 Change of the *Anabaena* Fluorescence Spectra by Dark Some Conditions 595
30.2.2.4 Intracellular Spectral Gradient in *Anabaena* Cells 596
30.2.3 Spectral Imaging of Chloroplasts 598
30.2.3.1 Chloroplasts from a Plant, *Zea mays* 598
30.2.3.2 Chloroplast from the Green Alga, *Chlorella* 600
30.3 Technical Verification and Perspective 601
30.4 Summary 602
References 604

31 Fluorescence Lifetime Imaging Study on Living Cells with Particular Regard to Electric Field Effects and pH Dependence 607
Nobuhiro Ohta and Takakazu Nakabayashi
31.1 Introduction 607
31.2 Experimental 608
31.2.1 FLIM Measurement System 608
31.2.2 Preparation of *Hb. salinarum* Loaded with BCECF 610
31.2.3 Measurements of External Electric Field Effects 610
31.3 Results and Discussion 611
31.3.1 FLIM of *Hb. salinarum* 611
31.3.2 pH Dependence of the Fluorescence Lifetime in Solution and in Living Cells 614
31.3.3 External Electric Field Effect on Fluorescence of BCECF 616
31.3.4 Electric-Field-Induced Aggregate Formation in *Hb. salinarum* 617
31.4 Summary 619
References 619

32 Multidimensional Fluorescence Imaging for Non-Invasive Tracking of Cell Responses 623
Ryosuke Nakamura and Yasuo Kanematsu
32.1 Introduction 623
32.2 Materials and Methods 625
32.2.1 Time-Gated Excitation–Emission Matrix Spectroscopy 625
32.2.2 Time- and Spectrally-Resolved Fluorescence Imaging 626
32.2.3 PARAFAC Model 628
32.2.4 Sample Preparation 630
32.3 Time-Gated Excitation–Emission Matrix Spectroscopy 630
32.3.1 The 3D Fluorescence Properties of Dye Solutions 630
32.3.2 The 3D Fluorescence Property of a Mixed Solution 631
32.3.3 PARAFAC Decomposition Without any Prior Knowledge of Constituents 633
32.4 Time- and Spectrally-Resolved Fluorescence Imaging 635
32.4.1 Characterization of γ-Em Maps 635
32.4.2 Spatial Localization of Fluorescent Components 637
32.4.3 PARAFAC Decomposition 637
32.4.4 Possible Assignments of Fluorescent Components 639
32.5 Concluding Remarks 640
References 642

33 Fluorescence Correlation Spectroscopy on Molecular Diffusion Inside and Outside a Single Living Cell 645
Kiminori Ushida and Masataka Kinjo
33.1 Introduction 645
33.1.1 Investigation on Biological System Based on Molecular Identification and Visualization 645
33.1.2 Technical Restrictions and Regulations in Real-Time Visualization of Material Transport in Biological System 647
33.1.2.1 Spatial Resolution 647
33.1.2.2 Time Resolution 648
33.1.2.3 Sensitivity 648
33.1.3 Time and Space Resolution Required to Observe Anomalous Diffusion of a Single Molecule in Biological Tissues 648
33.1.4 General Importance of Anomalous Diffusion in a Signaling Reaction 652
33.2 Use of Fluorescence Correlation Spectroscopy (FCS) for Investigation of Biological Systems 655
33.2.1 Use of FCS for Biological Systems 655
33.2.2 Experimental Example of Anomalous Diffusion Observed in a Model System for Extracellular Matrices 656
33.2.3 Quantitative Estimation of Reaction Volume in Signaling Reaction 661
33.3 A Short Review of Recent Literature Concerning FCS Inside and Outside a Single Cell 662
33.3.1 FCS Measurement Inside Single Cells 662
33.3.2 FCS Measurement Outside Cells 664
33.4 Summary 664
References 665