Contents

PROLOGUE I

PROLOGUE TO ELECTRONICS 1

- Brief History 1
- Passive and Active Devices 2
- Electronic Circuits 2
- Discrete and Integrated Circuits 3
- Analog and Digital Signals 3
- Notation 4
- Summary 5

PART 1

SEMICONDUCTOR DEVICES AND BASIC APPLICATIONS 7

Chapter 1 **Semiconductor Materials and Diodes** 9

- Preview 9
 - 1.1 Semiconductor Materials and Properties 10
 - 1.2 The pn Junction 23
 - 1.3 Diode Circuits: DC Analysis and Models 34
 - 1.4 Diode Circuits: AC Equivalent Circuit 43
 - 1.5 Other Diode Types 48
 - 1.6 Design Application: Diode Thermometer 54
 - 1.7 Summary 56
 - Problems 57

Chapter 2 **Diode Circuits** 67

- Preview 67
 - 2.1 Rectifier Circuits 68
 - 2.2 Zener Diode Circuits 84
 - 2.3 Clipper and Clamper Circuits 90
 - 2.4 Multiple-Diode Circuits 97
 - 2.5 Photodiode and LED Circuits 106
 - 2.6 Design Application: DC Power Supply 108
 - 2.7 Summary 110
 - Problems 111

Chapter 3 **The Field-Effect Transistor** 125

- Preview 125
 - 3.1 MOS Field-Effect Transistor 126
 - 3.2 MOSFET DC Circuit Analysis 146
PART 2
ANALOG ELECTRONICS 619

Chapter 9 Ideal Operational Amplifiers and Op-Amp Circuits 621
 Preview 621
 9.1 The Operational Amplifier 622
 9.2 Inverting Amplifier 627
 9.3 Summing Amplifier 636
 9.4 Noninverting Amplifier 638
 9.5 Op-Amp Applications 641
 9.6 Operational Transconductance Amplifiers 657
 9.7 Op-Amp Circuit Design 658
 9.8 Design Application: Electronic Thermometer with an Instrumentation Amplifier 665
 9.9 Summary 668
 Problems 669

Chapter 10 Integrated Circuit Biasing and Active Loads 687
 Preview 687
 10.1 Bipolar Transistor Current Sources 688
 10.2 FET Current Sources 707
 10.3 Circuits with Active Loads 719
 10.4 Small-Signal Analysis: Active Load Circuits 726
 10.5 Design Application: An NMOS Current Source 734
 10.6 Summary 736
 Problems 737

Chapter 11 Differential and Multistage Amplifiers 753
 Preview 753
 11.1 The Differential Amplifier 754
 11.2 Basic BJT Differential Pair 754
 11.3 Basic FET Differential Pair 779
 11.4 Differential Amplifier with Active Load 790
 11.5 BiCMOS Circuits 801
 11.6 Gain Stage and Simple Output Stage 806
 11.7 Simplified BJT Operational Amplifier Circuit 811
 11.8 Diff-Amp Frequency Response 815
 11.9 Design Application: A CMOS Diff-Amp 821
 11.10 Summary 824
 Problems 825

Chapter 12 Feedback and Stability 851
 Preview 851
 12.1 Introduction to Feedback 852
 12.2 Basic Feedback Concepts 853
 12.3 Ideal Feedback Topologies 863
12.4 Voltage (Series–Shunt) Amplifiers 873
12.5 Current (Shunt–Series) Amplifiers 879
12.6 Transconductance (Series–Series) Amplifiers 886
12.7 Transresistance (Shunt–Shunt) Amplifiers 893
12.8 Loop Gain 901
12.9 Stability of the Feedback Circuit 908
12.10 Frequency Compensation 918
12.11 Design Application: A MOSFET Feedback Circuit 924
12.12 Summary 927

Problems 928

Chapter 13

Operational Amplifier Circuits 947

Preview 947
13.1 General Op-Amp Circuit Design 948
13.2 A Bipolar Operational Amplifier Circuit 950
13.3 CMOS Operational Amplifier Circuits 970
13.4 BiCMOS Operational Amplifier Circuits 981
13.5 JFET Operational Amplifier Circuits 989
13.6 Design Application: A Two-Stage CMOS Op-Amp to Match a Given Output Stage 992
13.7 Summary 995

Problems 997

Chapter 14

Nonideal Effects in Operational Amplifier Circuits 1009

Preview 1009
14.1 Practical Op-Amp Parameters 1010
14.2 Finite Open-Loop Gain 1013
14.3 Frequency Response 1023
14.4 Offset Voltage 1030
14.5 Input Bias Current 1042
14.6 Additional Nonideal Effects 1045
14.7 Design Application: An Offset Voltage Compensation Network 1047
14.8 Summary 1049

Problems 1050

Chapter 15

Applications and Design of Integrated Circuits 1061

Preview 1061
15.1 Active Filters 1062
15.2 Oscillators 1074
15.3 Schmitt Trigger Circuits 1084
15.4 Nonsinusoidal Oscillators and Timing Circuits 1096
15.5 Integrated Circuit Power Amplifiers 1107
15.6 Voltage Regulators 1114
15.7 Design Application: An Active Bandpass Filter 1122
15.8 Summary 1125

Problems 1126
PROLOGUE TO DIGITAL ELECTRONICS 1141

- Preview 1141
- Logic Functions and Logic Gates 1141
- Logic Levels 1143
- Noise Margin 1143
- Propagation Delay Times and Switching Times 1144
- Summary 1144

PART 3

DIGITAL ELECTRONICS 1145

Chapter 16
MOSFET Digital Circuits 1147

- Preview 1147
 - 16.1 NMOS Inverters 1148
 - 16.2 NMOS Logic Circuits 1163
 - 16.3 CMOS Inverter 1168
 - 16.4 CMOS Logic Circuits 1183
 - 16.5 Clocked CMOS Logic Circuits 1191
 - 16.6 Transmission Gates 1194
 - 16.7 Sequential Logic Circuits 1202
 - 16.8 Memories: Classifications and Architectures 1208
 - 16.9 RAM Memory Cells 1212
 - 16.10 Read-Only Memory 1221
 - 16.11 Data Converters 1226
 - 16.12 Design Application: A Static CMOS Logic Gate 1232
 - 16.13 Summary 1234
 - Problems 1236

Chapter 17
Bipolar Digital Circuits 1255

- Preview 1255
 - 17.1 Emitter-Coupled Logic (ECL) 1256
 - 17.2 Modified ECL Circuit Configurations 1267
 - 17.3 Transistor–Transistor Logic 1277
 - 17.4 Schottky Transistor–Transistor Logic 1289
 - 17.5 BiCMOS Digital Circuits 1296
 - 17.6 Design Application: A Static ECL Gate 1298
 - 17.7 Summary 1300
 - Problems 1301

Appendix A
Physical Constants and Conversion Factors 1315

Appendix B
Selected Manufacturers' Data Sheets 1317

Appendix C
Standard Resistor and Capacitor Values 1329

Appendix D
Reading List 1333

Appendix E
Answers to Selected Problems 1337

Index 1359