SATELLITE COMMUNICATIONS SYSTEMS
Systems, Techniques and Technology
Fourth Edition

Gérard Maral
Ecole Nationale Supérieure des Télécommunications,
Site de Toulouse, France

Michel Bousquet
Ecole Nationale Supérieure de l'Aéronautique et de l'Espace (SUPAERO),
Toulouse, France

JOHN WILEY & SONS, LTD
CONTENTS

<table>
<thead>
<tr>
<th>ACKNOWLEDGEMENT</th>
<th>xiii</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACRONYMS</td>
<td>xv</td>
</tr>
<tr>
<td>NOTATION</td>
<td>xix</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 The birth of satellite communications</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Development of satellite communications</td>
<td>1</td>
</tr>
<tr>
<td>1.3 The configuration of a satellite communications system</td>
<td>3</td>
</tr>
<tr>
<td>1.3.1 Communications links</td>
<td>5</td>
</tr>
<tr>
<td>1.3.2 The space segment</td>
<td>6</td>
</tr>
<tr>
<td>1.3.3 The ground segment</td>
<td>9</td>
</tr>
<tr>
<td>1.4 Types of orbit</td>
<td>11</td>
</tr>
<tr>
<td>1.5 Radio regulations</td>
<td>14</td>
</tr>
<tr>
<td>1.5.1 The ITU organisation</td>
<td>14</td>
</tr>
<tr>
<td>1.5.2 Space radiocommunications services</td>
<td>15</td>
</tr>
<tr>
<td>1.5.3 Frequency allocation</td>
<td>15</td>
</tr>
<tr>
<td>1.6 Technology trends</td>
<td>17</td>
</tr>
<tr>
<td>1.7 Services</td>
<td>18</td>
</tr>
<tr>
<td>1.8 The way forward</td>
<td>20</td>
</tr>
<tr>
<td>References</td>
<td>21</td>
</tr>
<tr>
<td>2 ORBITS AND RELATED ISSUES</td>
<td>23</td>
</tr>
<tr>
<td>2.1 Keplerian orbits</td>
<td>23</td>
</tr>
<tr>
<td>2.1.1 Kepler's laws</td>
<td>23</td>
</tr>
<tr>
<td>2.1.2 Newton's law</td>
<td>23</td>
</tr>
<tr>
<td>2.1.3 Relative movement of two point bodies</td>
<td>24</td>
</tr>
<tr>
<td>2.1.4 Orbital parameters</td>
<td>28</td>
</tr>
<tr>
<td>2.1.5 The earth's orbit</td>
<td>33</td>
</tr>
<tr>
<td>2.1.6 Earth-satellite geometry</td>
<td>41</td>
</tr>
<tr>
<td>2.1.7 Eclipses of the sun</td>
<td>48</td>
</tr>
<tr>
<td>2.1.8 Sun-satellite conjunction</td>
<td>49</td>
</tr>
<tr>
<td>2.2 Useful orbits for satellite communication</td>
<td>49</td>
</tr>
<tr>
<td>2.2.1 Elliptical orbits with non-zero inclination</td>
<td>50</td>
</tr>
<tr>
<td>2.2.2 Geosynchronous elliptic orbits with zero inclination</td>
<td>63</td>
</tr>
<tr>
<td>2.2.3 Circular geosynchronous orbits with non-zero inclination</td>
<td>65</td>
</tr>
<tr>
<td>2.2.4 Sub-synchronous circular orbits with zero inclination</td>
<td>68</td>
</tr>
<tr>
<td>2.2.5 Geostationary satellite orbits</td>
<td>68</td>
</tr>
</tbody>
</table>
2.3 Perturbations of the orbit

2.3.1 The nature of the perturbations 80
2.3.2 The effect of perturbations; orbit perturbation 83
2.3.3 Perturbations of the orbit of geostationary satellites 85
2.3.4 Orbit corrections: station keeping of geostationary satellites 94

2.4 Conclusion 112

References 112

3 BASEBAND SIGNALS AND QUALITY OF SERVICE (QoS)

3.1 Baseband signals
3.1.1 Telephone signal 116
3.1.2 Television signals 123
3.1.3 Sound signals 128
3.1.4 Data and multimedia signals 128

3.2 Performance objectives
3.2.1 Telephone 129
3.2.2 Television 130
3.2.3 Sound 131
3.2.4 Data 131

3.3 Availability objectives 131

3.4 Delay
3.4.1 Delay in terrestrial network 132
3.4.2 Propagation delay over satellite links 132
3.4.3 Baseband signal processing time 133
3.4.4 Protocol-induced delay 133
3.4.5 Echo on telephone circuits 133

3.5 Conclusion 135

References 135

4 COMMUNICATIONS TECHNIQUES

4.1 Analogue transmission
4.1.1 Baseband processing 139
4.1.2 Frequency modulation (FM) 141
4.1.3 Demodulation of a frequency modulated wave 141
4.1.4 Telephone transmission on SCPC/FM 143
4.1.5 Telephone transmission on FDM/FM 144
4.1.6 Television transmission in SCPC/FM 146
4.1.7 Energy dispersion 148

4.2 Digital communications
4.2.1 Encryption 149
4.2.2 Channel encoding 150
4.2.3 Scrambling 153
4.2.4 Digital modulation 155
4.2.5 Demodulation 162
4.2.6 Modulation spectral efficiency 168
4.2.7 Channel decoding 169
4.2.8 Coded modulation 175
4.2.9 End-to-end error control 183

4.3 Conclusion: comparison between analogue and digital transmission 184

References 189
5 UP/DOWN LINK, INTERSATELLITE LINK AND OVERALL LINK PERFORMANCE

5.1 Configuration of a link 192
5.2 Antenna parameters 192
 5.2.1 Gain 192
 5.2.2 Radiation pattern and angular beamwidth 194
 5.2.3 Polarisation 197
5.3 Radiated power 199
 5.3.1 Effective isotropic radiated power (EIRP) 199
 5.3.2 Power flux density 199
5.4 Received signal power 200
 5.4.1 Power captured by the receiving antenna and free space loss 200
 5.4.2 Example 1: Uplink received power 202
 5.4.3 Example 2: Downlink received power 202
 5.4.4 Additional losses 203
 5.4.5 Conclusion 205
5.5 Noise power spectral density at the receiver input 206
 5.5.1 The origins of noise 206
 5.5.2 Noise characterisation 206
 5.5.3 Noise temperature of an antenna 210
 5.5.4 System noise temperature 214
 5.5.5 System noise temperature: Example 215
 5.5.6 Conclusion 216
5.6 Individual link performance 216
 5.6.1 Carrier power to noise power spectral density ratio at receiver input 217
 5.6.2 Clear sky uplink performance 217
 5.6.3 Clear sky downlink performance 220
5.7 Influence of the atmosphere 223
 5.7.1 Impairments caused by rain 224
 5.7.2 Other impairments 237
 5.7.3 Link impairments relative importance 240
 5.7.4 Link performance under rain conditions 240
 5.7.5 Conclusion: degradation of individual link performance due to rain 241
5.8 Mitigation of atmospheric impairments 242
 5.8.1 Depolarisation mitigation 242
 5.8.2 Attenuation mitigation 242
 5.8.3 Site diversity 243
 5.8.4 Adaptivity 244
 5.8.5 Conclusion: cost-availability trade-off 245
5.9 Overall link performance with transparent satellite 246
 5.9.1 Characteristics of the satellite channel 246
 5.9.2 Expression for \((C/N_0)T\) 250
 5.9.3 Overall link performance for a transparent satellite without interference or intermodulation 254
5.10 Overall link performance with regenerative satellite 257
 5.10.1 Linear satellite channel without interference 258
 5.10.2 Non-linear satellite channel without interference 261
 5.10.3 Non-linear satellite channel with interference 261
5.11 Intersatellite link performance 263
 5.11.1 Frequency bands 264
 5.11.2 Radio-frequency links 264
6 MULTIPLE ACCESS

6.1 Traffic parameters
6.1.1 Traffic intensity
6.1.2 Call blocking probability
6.1.3 Burstiness
6.1.4 Asynchronous transfer mode (ATM)

6.2 Traffic routing
6.2.1 One carrier per station-to-station link
6.2.2 One carrier per transmitting station
6.2.3 Comparison

6.3 Multiple access
6.3.1 Access to a particular channel
6.3.2 Multiple access to the satellite repeater

6.4 Frequency division multiple access (FDMA)
6.4.1 Transmission schemes
6.4.2 Adjacent channel interference
6.4.3 Intermodulation
6.4.4 Throughput of FDMA
6.4.5 Intelligible crosstalk
6.4.6 Conclusion

6.5 Time division multiple access (TDMA)
6.5.1 Burst generation
6.5.2 Frame structure
6.5.3 Burst reception
6.5.4 Synchronisation
6.5.5 Throughput of TDMA
6.5.6 Conclusion

6.6 Code division multiple access (CDMA)
6.6.1 Direct sequence (DS-CDMA)
6.6.2 Frequency hopping (FH-CDMA)
6.6.3 Code generation
6.6.4 Synchronisation
6.6.5 The throughput of CDMA
6.6.6 Conclusion

6.7 Fixed and on-demand assignment
6.7.1 The principle
6.7.2 Comparison between fixed and on-demand assignment
6.7.3 Centralised or distributed management of demand assignment
6.7.4 Conclusion

6.8 Random access
6.8.1 Asynchronous protocols
6.8.2 Protocols with synchronisation
6.8.3 Protocols with assignment on demand (DAMA)

6.9 Conclusion

References
Contents

7 SATELLITE NETWORKING

7.1 Advantages and disadvantages of multibeam satellites
 - 7.1.1 Advantages
 - 7.1.2 Disadvantages
 - 7.1.3 Conclusion

7.2 Interconnection by transponder hopping

7.3 Interconnection by on-board switching (SS/TDMA)
 - 7.3.1 The principle
 - 7.3.2 Frame organisation
 - 7.3.3 Window organisation
 - 7.3.4 Assignment of packets in the frame (burst time plan)
 - 7.3.5 Synchronisation
 - 7.3.6 Frame throughput

7.4 Interconnection by beam scanning

7.5 On-board processing
 - 7.5.1 Downlink coding
 - 7.5.2 Baseband switching
 - 7.5.3 Rate conversion
 - 7.5.4 Beam scanning satellites
 - 7.5.5 FDMA/TDM systems
 - 7.5.6 Conclusion

7.6 Intersatellite links (ISL)
 - 7.6.1 Links between geostationary and low earth orbit satellites (GEO-LEO)
 - 7.6.2 Links between geostationary satellites (GEO-GEO)
 - 7.6.3 Links between low orbit satellites (LEO-LEO)
 - 7.6.4 Conclusion

References

8 EARTH STATIONS

8.1 Station organisation

8.2 Radio-frequency characteristics
 - 8.2.1 Effective isotropic radiated power
 - 8.2.2 Figure of merit of the station
 - 8.2.3 Standards defined by international organisations

8.3 The antenna subsystem
 - 8.3.1 Radiation characteristics (main lobe)
 - 8.3.2 Side-lobe radiation
 - 8.3.3 Antenna noise temperature
 - 8.3.4 Types of antenna
 - 8.3.5 Pointing angles of an earth station antenna
 - 8.3.6 Mountings to permit antenna pointing
 - 8.3.7 Tracking

8.4 The radio-frequency subsystem
 - 8.4.1 Receiving equipment
 - 8.4.2 Transmission equipment
 - 8.4.3 Redundancy

8.5 Communication subsystems
 - 8.5.1 Frequency translation
 - 8.5.2 Amplification, filtering and equalisation
 - 8.5.3 Modulation and demodulation
 - 8.5.4 Additional functions
 - 8.5.5 Time division multiple access terminals
Contents

9.8 Conclusion 546
References 546

10 THE PLATFORM 551

10.1 Subsystems 551
10.2 Attitude control 553
 10.2.1 Attitude control functions 553
 10.2.2 Attitude sensors 555
 10.2.3 Attitude determination 557
 10.2.4 Actuators 561
 10.2.5 The principle of gyroscopic stabilisation 563
 10.2.6 Spin stabilisation 565
 10.2.7 ‘Three-axis’ stabilisation 568
10.3 The propulsion subsystem 574
 10.3.1 Characteristics of thrusters 575
 10.3.2 Chemical propulsion 577
 10.3.3 Electric propulsion 582
 10.3.4 Organisation of the propulsion subsystem 587
 10.3.5 Electric propulsion for station keeping and orbit transfer 591
10.4 The electric power supply 592
 10.4.1 Primary energy sources 592
 10.4.2 Secondary energy sources 599
 10.4.3 Conditioning and protection circuits 605
 10.4.4 Example calculations 610
10.5 Telemetry, tracking and command (TTC) and on-board data handling (OBDH) 612
 10.5.1 Frequencies used 613
 10.5.2 The command links (TC links) 614
 10.5.3 Telemetry links (TM links) 615
 10.5.4 Command (TC) and telemetry (TM) message format standards 616
 10.5.5 On-board data handling (OBDH) 623
 10.5.6 Tracking 627
10.6 Thermal control and structure 631
 10.6.1 Thermal control specifications 632
 10.6.2 Passive control 634
 10.6.3 Active control 637
 10.6.4 Structure 637
 10.6.5 Conclusion 640
10.7 Developments and trends 641
References 642

11 SATELLITE INSTALLATION AND LAUNCH VEHICLES 645

11.1 Installation in orbit 645
 11.1.1 Basic principles 645
 11.1.2 Calculation of the required velocity increments 647
 11.1.3 Inclination correction and circularisation 648
 11.1.4 The apogee (or perigee) motor 658
 11.1.5 Injection into orbit with a conventional launcher 663
 11.1.6 Injection into orbit from a quasi-circular low altitude orbit 668
 11.1.7 Operations during installation (station acquisition) 670
 11.1.8 Injection into orbits other than geostationary 673
 11.1.9 The launch window 674
11.2 Launch vehicles
11.2.1 China
11.2.2 Europe (Ariane)
11.2.3 The United States
11.2.4 India
11.2.5 Japan
11.2.6 Commonwealth of Independent States (CIS)
11.2.7 Cost of installation in orbit

References

12 THE SPACE ENVIRONMENT
12.1 Vacuum
12.1.1 Characterisation
12.1.2 Effects
12.2 The mechanical environment
12.2.1 The gravitational field
12.2.2 The earth's magnetic field
12.2.3 Solar radiation pressure
12.2.4 Meteorites and material particles
12.2.5 Torques of internal origin
12.2.6 The effect of communication transmissions
12.2.7 Conclusions
12.3 Radiation
12.3.1 Solar radiation
12.3.2 Earth radiation
12.3.3 Thermal effects
12.3.4 Effects on materials
12.4 Flux of high energy particles
12.4.1 Cosmic particles
12.4.2 Effects on materials
12.5 The environment during installation
12.5.1 The environment during launching
12.5.2 Environment in the transfer orbit

References

13 RELIABILITY OF SATELLITE COMMUNICATIONS SYSTEMS
13.1 Introduction of reliability
13.1.1 Failure rate
13.1.2 The probability of survival or reliability
13.1.3 Failure probability or unreliability
13.1.4 Mean time to failure (MTTF)
13.1.5 Mean satellite lifetime
13.1.6 Reliability during the wear-out period
13.2 Satellite system availability
13.2.1 No back-up satellite in orbit
13.2.2 Back-up satellite in orbit
13.2.3 Conclusion
13.3 Sub-system reliability
13.3.1 Elements in series
13.3.2 Elements in parallel (static redundancy)
Contents

13.3.3 Dynamic redundancy (with switching) 734
13.3.4 Equipment having several failure modes 738
13.4 Component reliability 739
13.4.1 Component reliability 739
13.4.2 Component selection 739
13.4.3 Manufacture 741
13.4.4 Quality assurance 741

INDEX 745

ACKNOWLEDGEMENT

The choice of the excerpts reproduced remains under the sole responsibility of the authors and does not engage in any way the ITU.

The complete ITU documentation can be obtained from:

International Telecommunication Union
General Secretariat-Sales Section
Place des Nations, 1211 GENEVA 20 (Switzerland)

Tel: +41 22 730 51 11 Tg: Burinterna Geneva
Telefax: 2/m + 41 22 730 51 94 Tlx: 421 000 uit ch