Y. Hatamura (Ed.)

Learning from Design Failures

Springer
PART I The Theory of Failure

1 WHAT IS FAILURE? 3
 1.1 Hierarchy of Failure 3
 1.2 Growth of Failure 4
 1.3 Generating Knowledge on Failure 6
 1.4 Learning Through Failure 8
 1.5 Effects of Learning Through Failure 9
 1.6 Characteristics of Failure Information 12

2 EXPERIENCING FAILURES 17
 2.1 Allowing Students to Experience Failure in an Educational Context 17
 2.2 Allowing Students to Experience Simulated Failures and Failure Training 19
 2.3 Dealing with Those Who Have Failed 20
 2.4 Failure and Education 21
 2.5 Analysis of Failure Information and the Causes of Failure 22
 2.6 How to Acquire Knowledge 24
 2.7 Transmission of Failure Information 26

3 FAILURES IN DESIGN 29
 3.1 The Scope of Design in This Book 29
 3.2 Classification of Design Failures 30
 3.3 Thought Processes Required in Design and the Role of Failure 31
 3.4 The Behavior of a Designer Who Has Failed 33
 3.5 Production Organization and Failure Information 35
 3.6 Design in Consideration of Failure 39
 3.7 The Design of Screws as Learned from Failures 40
PART II Learning from Design Failures

4 DESIGN FAILURE CASEBOOK

A-1 FAILURES CONCERNING DRAWING
- 1 A part with an absurd section .. 49
- 2 Screw heads twisted off .. 51
- 3 A part was fabricated in mirror-symmetry 53
- 4 Top and bottom bolsters did not correspond 56
- 5 An experiment unit hit its own feed mechanism 59
- 6 Tapped holes were not coordinated with drilled holes 61
- 7 Too many parts were fabricated 63

A-2 FAILURES PECULIAR TO MACHINE DESIGN
- 8 Convex fillet welds and edges interfered on assembly 66
- 9 A dummy block got stuck in the hole 68
- 10 Welding torch access was impossible and the machine could not be assembled .. 71
- 11 Duralumin shaft was gouged and became loose 73
- 12 S48C caused weld cracking 75
- 13 The rod of a hydraulic oil cylinder failed 77
- 14 Temperature fluctuations resulted in plastic deformation .. 79

A-3 FAILURES RELATED TO MECHANICAL ELEMENTS
- 15 A metric screw thread caused galling when employed as a feed mechanism .. 81
- 16 The fastening bolt on the delivery valve became loose 83
- 17 Students tore screw fasteners one after another 85
- 18 Chain tension could not be adjusted 87
- 19 A rubber hose does not act as an accumulator 89
- 20 Unmatched heat transfer performance 91
- 21 Axial play in a swing arm 93

A-4 FAILURES THAT OCCURRED IN OPERATION AFTER DESIGN
- 22 An M3 screw thread was manufactured to an old JIS standard 96
- 23 M1.6 cap screw was unavailable 98
- 24 Drawings in a catalog were inaccurate 100
- 25 Piezo-electric element was destroyed by high voltage 102
- 26 Output of a force sensor fluctuated 105
- 27 Cable was broken by repeated bending 107

B-1 FAILURES IN DETERMINING MECHANISM
- 28 Feed screw device only groaned 109
- 29 Engine power of a wheel loader was wrongly distributed ... 111
- 30 A four-wheel-drive vehicle did not run well 114
- 31 Collision caused by malfunctioning limit switch 116
- 32 Only a slight rotation was achieved 119
Trouble in one process stopped the entire system 122
The standby pump was not switched on in an emergency 124
The light switches were placed too high 126
Wheel rim cracked ... 128

B-2 FAILURES IN DECIDING STRUCTURES 130
A fracture caused by a crack in the root of a thread 130
High stress generated in a radiator 132
Frame was not rigid .. 134
Cracking occurred on a dump truck frame 137
Hydraulic cylinder rod was pulled out 140
A large dump truck was destroyed by fire 142

B-3 FAILURES IN THE SELECTION OF MATERIALS 144
We were too accustomed to an air-conditioned environment 144
Nylon float did not float on water 146
Hydraulic cylinder rod dropped 148
Rubber on a material storage unit peeled off 150
Cast iron crankshaft vibrated 152
Aluminum grows .. 154
Super-invar was employed but thermal drift occurred 156

C-1 FAILURES RECOGNIZED DURING PRODUCTION 159
Oil filler port became clogged 159
Oil filler port became clogged again 161
Many mistakes occurred when wiring was designed manually 163
Stripes on the surface of a mold 167
Tooth bearing of a bevel gear was not good 170
Electronic circuit was damaged by fire 173

C-2 FAILURES RECOGNIZED DURING ASSEMBLY AND INSPECTION 175
Strain gauges could not be wired 175
When the operator firmly tightened a screw, the force sensor broke 178
Translation table would not move 181
After assembly, a nut was out of sight and could not be tightened 185
All parts failed the reflectance test 187
Turning an adjustment screw did not move anything 190
The system was normal but executed an emergency shutdown 192

C-3 FAILURES REALIZED AT PROCUREMENT 194
Device stopped due to defective seals 194
Piston pin was loose after a change in the design 197
Purchasing agent was furious 199
Circuit had too much noise and was unusable 201
Defective flatness occurred in quantity ... 203
Measuring device crashed into a rotating cylinder 205
Measuring device crashed into a rotating cylinder again 207
Insufficient pressure to extrude .. 209
Output of force sensor was not proportional to the load 212
Output oscillations were much larger than the required resolution ... 215
Massive scratch defects were discovered in blanks 218
Boss was cut after machining using CAM 220
Complaints from Canadian field workers 224
Bore diameter defects happened mainly on Mondays 226
Weld defects occurred in Russia ... 228
Cut reinforcing plate compromised safety 230
Pipe curved in the longitudinal direction in an expansion process 233
Lead wire of proximity sensor broke .. 237
Impressed scratches were present on all product surfaces 239
Steering locked in Australia ... 241
Wiper defects occurred in the USA ... 243
Hood could open while the vehicle was being driven 247
Door lock would not disengage .. 250
Brittle materials could not be cut in a predictable way 253
Injury narrowly avoided in a material compression test 255
Thumb was injured by exposure to hydrofluoric acid 258
Injury caused by a powerful magnet 260
Overenthusiasm was a sign of disturbed psychological balance 262
Death caused by crashing between large-diameter steel pipes 264
Easier to buy than to make ... 271
One cannot design something beyond one’s capability 274
Inverse transfer function was somewhat strange 277
Robot controller was not completed 281
Accidents occurred during tests on vehicles with cold-region specifications ... 284
Automation did not improve productivity 286
LAN system was applied to six students in a classroom 288
Development of a laser sensing system was discontinued 290
Instrumentation system did not sell well in Japan 292
Developed technology was rejected due to a crash in the price of steel ... 294
E-2 FAILURE IN OBTAINING PATENT RIGHTS .. 296
102 What was believed to have been corrected remained uncorrected 296
103 The opportunity to present research results was lost 299
104 Presentation was made at a conference before a patent application had been made .. 301
105 A component manufacturer applied for a patent before the main company did .. 304
106 Patent application was denied due to a prior patent held by the company making the application 306
107 A patent application considered likely to succeed was rejected 309
108 A trademark had been registered both in Japan and overseas 310

PART III Learning from Failures

5 SERIOUS ACCIDENT CASEBOOK .. 315
5-1 ACCIDENTS CONCERNING STRUCTURES .. 317
1 Tacoma Narrows Bridge disaster .. 317
2 Collapse of suspension bridges as a result of marching soldiers 322
3 Cracking and sinking of Liberty ships ... 325
4 Explosions in Comets, the world's first jetliner 330
5 Crude oil pipeline cracked in the Persian Gulf 333
6 Turbine rotor burst in Nagasaki, Japan ... 336
7 Explosive turbine shaft destruction in Wakayama, Japan 343
8 The collapse of a German silo .. 346
9 Crude oil spill as a result of tank failure in Mizushima, Japan 350

5-2 ACCIDENTS INVOLVING TRANSPORTATION SYSTEMS 358
10 The sinking of the Toya-maru, a rail ferry running between Aomori and Hakodate .. 358
11 Triple train collision at Mikawashima on the Joban Line, just north of Tokyo .. 365
12 A train fire in Hokuriku Tunnel .. 369
13 A train fell from Amarube Trestle .. 373
14 Head-on collision on the Shigaraki Highland Railway 377
15 Collision and fire involving the Ford Pinto 381
16 Stranding of the large tanker Exxon Valdez in Alaska 383
17 A DC10 crashed in woods 45 km from Paris 386
18 JAL jumbo jet crashed on Mt. Osutaka 390
19 Explosion of Space Shuttle Challenger 394

5-3 ACCIDENTS AT PLANTS .. 399
20 Explosion of coal dust at Mitsui Miike Coal Mine 399
XVI Contents

21 Destruction of the nuclear power plant at Three Mile Island, USA .. 401
22 Explosion of a nuclear power plant at Chernobyl, USSR 407
23 Toxic gas leaked from a chemical plant in Bhopal, India 415
24 Explosion of a PEMEX LPG Tank in Mexico 419
25 Explosions at a resin manufacturing plant in Osaka 426
26 Monosilane gas explosion at Osaka University 431

6 LEARNING FROM A MAJOR TURBINE ROTOR BURST ACCIDENT ... 435
6.1 The Background of the Accident 435
6.2 Essential Knowledge to Understand the Accident 438
6.3 The Cause and the Process of the Accident 443
6.4 Countermeasures after the Accident 449
6.5 Learning from the Accident .. 451

PART IV How to Make the Most of Failures

7 HOW TO MAKE THE MOST OF FAILURES 455
7.1 What an Engineer Should Do ... 455
7.2 What Should Be Done in Educating Engineers 456
7.3 Failures and Organization .. 460
7.4 Production and Failure .. 462

Index ... 471