Contents

Author contact details

Preface

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to titanium alloys</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Conventional titanium alloys</td>
<td>2</td>
</tr>
<tr>
<td>1.3</td>
<td>Titanium aluminides</td>
<td>4</td>
</tr>
<tr>
<td>1.4</td>
<td>Modelling</td>
<td>7</td>
</tr>
<tr>
<td>1.5</td>
<td>References</td>
<td>8</td>
</tr>
</tbody>
</table>

Part I Experimental techniques

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Microscopy</td>
<td>11</td>
</tr>
<tr>
<td>2.1</td>
<td>High temperature microscopy of surface oxidation and transformations</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Gamma titanium aluminide</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Transmission electron microscopy of microstructural evolution</td>
<td>25</td>
</tr>
<tr>
<td>2.4</td>
<td>References</td>
<td>31</td>
</tr>
<tr>
<td>3</td>
<td>Synchrotron radiation X-ray diffraction</td>
<td>33</td>
</tr>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Measurements at room temperature</td>
<td>34</td>
</tr>
<tr>
<td>3.3</td>
<td>Measurements at elevated temperatures</td>
<td>42</td>
</tr>
<tr>
<td>3.4</td>
<td>Gamma titanium aluminide</td>
<td>54</td>
</tr>
<tr>
<td>3.5</td>
<td>References</td>
<td>68</td>
</tr>
<tr>
<td>4</td>
<td>Differential scanning calorimetry and property measurements</td>
<td>70</td>
</tr>
<tr>
<td>4.1</td>
<td>Phase and structural transformations</td>
<td>70</td>
</tr>
<tr>
<td>4.2</td>
<td>Mechanical properties of $\beta 21S$ alloy</td>
<td>83</td>
</tr>
</tbody>
</table>
Contents

4.3 Effects of hydrogen penetration 86
4.4 References 91

Part II Physical models

5 Thermodynamic modelling 95
5.1 Introduction 95
5.2 Conventional titanium alloys 96
5.3 Titanium aluminides 106
5.4 References 115

6 The Johnson–Mehl–Avrami method: isothermal transformation kinetics 117
6.1 Introduction 117
6.2 Resistivity experiments 118
6.3 Metallography 123
6.4 X-ray diffraction 128
6.5 Additional ageing 130
6.6 Thermodynamic equilibria 132
6.7 Kinetics of the transformation 140
6.8 Time–temperature–transformation diagrams 156
6.9 Summary 162
6.10 References 163

7 The Johnson–Mehl–Avrami method adapted to continuous cooling 165
7.1 Introduction 165
7.2 Interpretation of calorimetry data 165
7.3 X-ray diffraction 172
7.4 Microstructure and hardness 174
7.5 Calculation of continuous-cooling-transformation diagrams 178
7.6 Calculation of transformation kinetics 183
7.7 Simulation and monitoring of transformations on continuous cooling 197
7.8 Summary 200
7.9 References 202

8 Finite element method: morphology of β to α phase transformation 203
8.1 Introduction 203
8.2 Experimental and modelling methodology 204
8.3 Experimental observation of the morphology of the phase transformation 205
8.4 Mathematical formulation in the model for the microstructure of Ti-6Al-4V 205
8.5 The 1-D model 217
8.6 The 2-D model 222
8.7 Summary of the models for Ti-6Al-4V 232
8.8 Extending to other alloys 232
8.9 Summary 235
8.10 References 235

9 Phase-field method: lamellar structure formation in γ-TiAl 237
9.1 Introduction 237
9.2 Mathematical formulation 239
9.3 Computer simulation of lamellar structure formation in γ-TiAl 251
9.4 Summary 255
9.5 References 256

10 Cellular automata method for microstructural evolution modelling 257
10.1 Introduction 257
10.2 Microstructural evolution of Ti-6Al-4V during thermomechanical processing 258
10.3 The simulation model 262
10.4 Simulated microstructural evolution during dynamic recrystallisation 264
10.5 Simulated flow stress–strain behaviour 265
10.6 Summary of the simulation method and its capabilities 266
10.7 References 269

11 Crystallographic and fracture behaviour of titanium aluminide 270
11.1 Introduction 270
11.2 Single crystal characteristic 271
11.3 Crack path analyses 273
11.4 Transmission electron microscopy 279
11.5 A model for microcracks nucleation in basal slip 281
11.6 Summary 289
11.7 References 289
Contents

12 Atomistic simulations of interfaces and dislocations relevant to TiAl

12.1 Introduction 290
12.2 Tasks 291
12.3 Computational procedure 292
12.4 Choice of interatomic potential 295
12.5 References 297

Part III Neural network models

13 Neural network method 301
13.1 Introduction 301
13.2 Software description 302
13.3 Use of the software 319
13.4 Upgrading the software system 326
13.5 Summary 328
13.6 References 328

14 Neural network models and applications in phase transformation studies 331
14.1 β-transus temperature 331
14.2 Time–temperature–transformation diagrams 343
14.3 An example of MatLab program code for neural network training 361
14.4 References 363

15 Neural network models and applications in property studies 365
15.1 Correlation between processing parameters and mechanical properties 365
15.2 Fatigue stress life (S-N) diagrams 388
15.3 Mechanical properties of gamma-based titanium aluminides 397
15.4 Reference 409
15.5 Appendix 410

Part IV Surface engineering products

16 Surface gas nitriding: phase composition and microstructure 413
16.1 Introduction 413
16.2 Near-α Ti-8Al-1Mo-1V 417
16.3 Near-α Ti-6Al-2Sn-4Zr-2Mo
16.4 α + β Ti-6Al-4V
16.5 Near-β Ti-10V-2Fe-3Al
16.6 β21s
16.7 Timetal 205
16.8 Ti–Al
16.9 Summary of the effect of the parameters of gas nitriding on the microstructure
16.10 References

17 Surface gas nitriding: mechanical properties, morphology, corrosion
17.1 Hardness evolution
17.2 Tensile properties and fatigue performance after nitriding
17.3 Surface morphology and roughness of Ti-6Al-2Sn-4Zr-2Mo after nitriding
17.4 Corrosion behaviour
17.5 References

18 Nitriding: modelling of hardness profiles and the kinetics
18.1 Artificial neural network modelling of microhardness profiles
18.2 Kinetics of gas nitriding
18.3 References

19 Aluminising: fabrication of Al and Ti–Al coatings by mechanical alloying
19.1 Introduction
19.2 As-synthesised state
19.3 Annealing treatment of the aluminium coating
19.4 Annealing treatment of titanium/aluminium coating
19.5 Summary
19.6 References

Index