Fundamentals of High-Frequency CMOS Analog Integrated Circuits

Duran Leblebici
Istanbul Technical University (ITU)

Yusuf Leblebici
Swiss Federal Institute of Technology in Lausanne (EPFL)
Contents

Preface

1 Components of analog CMOS ICs

1.1 MOS transistors

1.1.1 Current–voltage relations of MOS transistors

1.1.1.1 The basic current–voltage relations without velocity saturation

1.1.1.2 Current–voltage relations under velocity saturation

1.1.1.3 The sub-threshold regime

1.1.2 Determination of model parameters and related secondary effects

1.1.2.1 Mobility

1.1.2.2 Gate capacitance

1.1.2.3 Threshold voltage

1.1.2.4 Channel length modulation factor

1.1.2.5 Gate length (L) and gate width (W)

1.1.3 Parasitics of MOS transistors

1.1.3.1 Parasitic capacitances

1.1.3.2 The high-frequency figure of merit

1.1.3.3 The parasitic resistances

1.2 Passive on-chip components

1.2.1 On-chip resistors

1.2.2 On-chip capacitors

1.2.2.1 Passive on-chip capacitors

1.2.2.2 Varactors

1.2.3 On-chip inductors

2 Basic MOS amplifiers: DC and low-frequency behavior

2.1 Common source (grounded source) amplifier

2.1.1 Biasing

2.1.2 The small-signal equivalent circuit

2.2 Active transistor loaded MOS amplifier

(CMOS inverter as analog amplifier)

2.3 Common-gate (grounded-gate) amplifier
2.4 Common-drain amplifier (source follower)
2.5 The “long tailed pair”
 2.5.1 The large signal behavior of the long tailed pair
 2.5.2 Common-mode feedback
3 High-frequency behavior of basic amplifiers
 3.1 High-frequency behavior of a common-source amplifier
 3.1.1 The R-C load case
 3.2 The source follower amplifier at radio frequencies
 3.3 The common-gate amplifier at high frequencies
 3.4 The “cascode” amplifier
 3.5 The CMOS inverter as a transimpedance amplifier
 3.6 MOS transistor with source degeneration at high frequencies
 3.7 High-frequency behavior of differential amplifiers
 3.7.1 The R-C loaded long tailed pair
 3.7.2 The fully differential, current-mirror loaded amplifier
 3.7.3 Frequency response of a single-ended output long tailed pair
 3.7.4 On the input and output admittances of the long tailed pair
 3.8 Gain enhancement techniques for high-frequency amplifiers
 3.8.1 “Additive” approach: distributed amplifiers
 3.8.2 Cascading strategies for basic gain stages
 3.8.3 An example: the “Cherry–Hooper” amplifier
4 Frequency-selective RF circuits
 4.1 Resonance circuits
 4.1.1 The parallel resonance circuit
 4.1.1.1 The quality factor of a resonance circuit
 4.1.1.2 The quality factor from a different point of view
 4.1.1.3 The “Q enhancement”
 4.1.1.4 Bandwidth of a parallel resonance circuit
 4.1.1.5 Currents of L and C branches of a parallel resonance circuit
 4.1.2 The series resonance circuit
 4.1.2.1 Component voltages in a series resonance circuit
 4.2 Tuned amplifiers
 4.2.1 The common-source tuned amplifier
 4.2.2 The tuned cascode amplifier
 4.3 Cascaded tuned stages and the staggered tuning
 4.4 Amplifiers loaded with coupled resonance circuits
 4.4.1 Magnetic coupling
 4.4.2 Capacitive coupling
 4.5 The gyrator: a valuable tool to realize high-value on-chip inductances
 4.5.1 Parasitics of a non-ideal gyrator
 4.5.2 Dynamic range of a gyrator-based inductor
4.6 The low-noise amplifier (LNA)
4.6.1 Input impedance matching
4.6.2 Basic circuits suitable for LNAs
4.6.3 Noise in amplifiers
4.6.3.1 Thermal noise of a resistor
4.6.3.2 Thermal noise of a MOS transistor
4.6.4 Noise in LNAs
4.6.5 The differential LNA

5 L-C oscillators
5.1 The negative resistance approach to L-C oscillators
5.2 The feedback approach to L-C oscillators
5.3 Frequency stability of L-C oscillators
5.3.1 Crystal oscillators
5.3.2 The phase-lock technique
5.3.3 Phase noise in oscillators

6 Analog–digital interface and system-level design considerations
6.1 General observations
6.2 Discrete-time sampling
6.3 Influence of sampling clock jitter
6.4 Quantization noise
6.5 Converter specifications
6.5.1 Static specifications
6.5.2 Frequency-domain dynamic specifications
6.6 Additional observations on noise in high-frequency ICs

Appendix A Mobility degradation due to the transversal field
Appendix B Characteristic curves and parameters of AMS 0.35 micron NMOS and PMOS transistors
Appendix C BSIM3-v3 parameters of AMS 0.35 micron NMOS and PMOS transistors
Appendix D Current sources and current mirrors
 D.1 DC current sources
 D.2 Frequency characteristics of basic current mirrors
 D.2.1 Frequency characteristics for normal saturation
 D.2.2 Frequency characteristics under velocity saturation

References

Index