Complex Valued Nonlinear Adaptive Filters
Noncircularity, Widely Linear and Neural Models

Danilo P. Mandic

Imperial College London, UK

Vanessa Su Lee Goh

Shell EP, Europe
Contents

Preface xiii

Acknowledgements xvii

1 The Magic of Complex Numbers 1

1.1 History of Complex Numbers 2
 1.1.1 Hypercomplex Numbers 7
1.2 History of Mathematical Notation 8
1.3 Development of Complex Valued Adaptive Signal Processing 9

2 Why Signal Processing in the Complex Domain? 13

2.1 Some Examples of Complex Valued Signal Processing 13
 2.1.1 Duality Between Signal Representations in \(\mathbb{R} \) and \(\mathbb{C} \) 18
2.2 Modelling in \(\mathbb{C} \) is Not Only Convenient But Also Natural 19
2.3 Why Complex Modelling of Real Valued Processes? 20
 2.3.1 Phase Information in Imaging 20
 2.3.2 Modelling of Directional Processes 22
2.4 Exploiting the Phase Information 23
 2.4.1 Synchronisation of Real Valued Processes 24
 2.4.2 Adaptive Filtering by Incorporating Phase Information 25
2.5 Other Applications of Complex Domain Processing of Real Valued Signals 26
2.6 Additional Benefits of Complex Domain Processing 29

3 Adaptive Filtering Architectures 33

3.1 Linear and Nonlinear Stochastic Models 34
3.2 Linear and Nonlinear Adaptive Filtering Architectures 35
 3.2.1 Feedforward Neural Networks 36
 3.2.2 Recurrent Neural Networks 37
 3.2.3 Neural Networks and Polynomial Filters 38
3.3 State Space Representation and Canonical Forms 39
4 Complex Nonlinear Activation Functions

4.1 Properties of Complex Functions
 4.1.1 Singularities of Complex Functions
4.2 Universal Function Approximation
 4.2.1 Universal Approximation in \(\mathbb{R} \)
4.3 Nonlinear Activation Functions for Complex Neural Networks
 4.3.1 Split-complex Approach
 4.3.2 Fully Complex Nonlinear Activation Functions
4.4 Generalised Splitting Activation Functions (GSAF)
 4.4.1 The Clifford Neuron
4.5 Summary: Choice of the Complex Activation Function

5 Elements of \(\mathbb{CR} \) Calculus

5.1 Continuous Complex Functions
5.2 The Cauchy–Riemann Equations
5.3 Generalised Derivatives of Functions of Complex Variable
 5.3.1 \(\mathbb{CR} \) Calculus
 5.3.2 Link between \(\mathbb{R} \)- and \(\mathbb{C} \)-derivatives
5.4 \(\mathbb{CR} \)-derivatives of Cost Functions
 5.4.1 The Complex Gradient
 5.4.2 The Complex Hessian
 5.4.3 The Complex Jacobian and Complex Differential
 5.4.4 Gradient of a Cost Function

6 Complex Valued Adaptive Filters

6.1 Adaptive Filtering Configurations
6.2 The Complex Least Mean Square Algorithm
 6.2.1 Convergence of the CLMS Algorithm
6.3 Nonlinear Feedforward Complex Adaptive Filters
 6.3.1 Fully Complex Nonlinear Adaptive Filters
 6.3.2 Derivation of CNGD using \(\mathbb{CR} \) calculus
 6.3.3 Split-complex Approach
 6.3.4 Dual Univariate Adaptive Filtering Approach (DUAF)
6.4 Normalisation of Learning Algorithms
6.5 Performance of Feedforward Nonlinear Adaptive Filters
6.6 Summary: Choice of a Nonlinear Adaptive Filter

7 Adaptive Filters with Feedback

7.1 Training of IIR Adaptive Filters
 7.1.1 Coefficient Update for Linear Adaptive IIR Filters
 7.1.2 Training of IIR filters with Reduced Computational Complexity
Contents

7.2 Nonlinear Adaptive IIR Filters: Recurrent Perceptron 97
7.3 Training of Recurrent Neural Networks 99
 7.3.1 Other Learning Algorithms and Computational Complexity 102
7.4 Simulation Examples 102

8 Filters with an Adaptive Stepsize 107
 8.1 Benveniste Type Variable Step size Algorithms 108
 8.2 Complex Valued GNGD Algorithms 110
 8.2.1 Complex GNGD for Nonlinear Filters (CFANNGD) 112
 8.3 Simulation Examples 113

9 Filters with an Adaptive Amplitude of Nonlinearity 119
 9.1 Dynamical Range Reduction 119
 9.2 FIR Adaptive Filters with an Adaptive Nonlinearity 121
 9.3 Recurrent Neural Networks with Trainable Amplitude of Activation Functions 122
 9.4 Simulation Results 124

10 Data-reusing Algorithms for Complex Valued Adaptive Filters 129
 10.1 The Data-reusing Complex Valued Least Mean Square (DRCLMS) Algorithm 129
 10.2 Data-reusing Complex Nonlinear Adaptive Filters 131
 10.2.1 Convergence Analysis 132
 10.3 Data-reusing Algorithms for Complex RNNs 134

11 Complex Mappings and Möbius Transformations 137
 11.1 Matrix Representation of a Complex Number 137
 11.2 The Möbius Transformation 140
 11.3 Activation Functions and Möbius Transformations 142
 11.4 All-pass Systems as Möbius Transformations 146
 11.5 Fractional Delay Filters 147

12 Augmented Complex Statistics 151
 12.1 Complex Random Variables (CRV) 152
 12.1.1 Complex Circularity 153
 12.1.2 The Multivariate Complex Normal Distribution 154
 12.1.3 Moments of Complex Random Variables (CRV) 157
 12.2 Complex Circular Random Variables 158
 12.3 Complex Signals 159
 12.3.1 Wide Sense Stationarity, Multicorrelations, and Multispectra 160
 12.3.2 Strict Circularity and Higher-order Statistics 161
 12.4 Second-order Characterisation of Complex Signals 161
 12.4.1 Augmented Statistics of Complex Signals 161
 12.4.2 Second-order Complex Circularity 164
13 Widely Linear Estimation and Augmented CLMS (ACLMS) 169
 13.1 Minimum Mean Square Error (MMSE) Estimation in \(\mathbb{C} \) 169
 13.1.1 Widely Linear Modelling in \(\mathbb{C} \) 171
 13.2 Complex White Noise 172
 13.3 Autoregressive Modelling in \(\mathbb{C} \)
 13.3.1 Widely Linear Autoregressive Modelling in \(\mathbb{C} \) 174
 13.3.2 Quantifying Benefits of Widely Linear Estimation 174
 13.4 The Augmented Complex LMS (ACLMS) Algorithm 175
 13.5 Adaptive Prediction Based on ACLMS
 13.5.1 Wind Forecasting Using Augmented Statistics 180

14 Duality Between Complex Valued and Real Valued Filters 183
 14.1 A Dual Channel Real Valued Adaptive Filter 184
 14.2 Duality Between Real and Complex Valued Filters
 14.2.1 Operation of Standard Complex Adaptive Filters 186
 14.2.2 Operation of Widely Linear Complex Filters 187
 14.3 Simulations 188

15 Widely Linear Filters with Feedback 191
 15.1 The Widely Linear ARMA (WL-ARMA) Model 192
 15.2 Widely Linear Adaptive Filters with Feedback
 15.2.1 Widely Linear Adaptive IIR Filters 195
 15.2.2 Augmented Recurrent Perceptron Learning Rule 196
 15.3 The Augmented Complex Valued RTRL (ACRTRL) Algorithm 197
 15.4 The Augmented Kalman Filter Algorithm for RNNs
 15.4.1 EKF Based Training of Complex RNNs 200
 15.5 Augmented Complex Unscented Kalman Filter (ACUKF)
 15.5.1 State Space Equations for the Complex Unscented Kalman Filter 201
 15.5.2 ACUKF Based Training of Complex RNNs 202
 15.6 Simulation Examples 203

16 Collaborative Adaptive Filtering 207
 16.1 Parametric Signal Modality Characterisation 207
 16.2 Standard Hybrid Filtering in \(\mathbb{R} \) 209
 16.3 Tracking the Linear/Nonlinear Nature of Complex Valued Signals
 16.3.1 Signal Modality Characterisation in \(\mathbb{C} \) 211
 16.4 Split vs Fully Complex Signal Natures 214
 16.5 Online Assessment of the Nature of Wind Signal
 16.5.1 Effects of Averaging on Signal Nonlinearity 216
 16.6 Collaborative Filters for General Complex Signals
 16.6.1 Hybrid Filters for Noncircular Signals 218
 16.6.2 Online Test for Complex Circularity 220
17 Adaptive Filtering Based on EMD

17.1 The Empirical Mode Decomposition Algorithm
 17.1.1 Empirical Mode Decomposition as a Fixed Point Iteration
 17.1.2 Applications of Real Valued EMD
 17.1.3 Uniqueness of the Decomposition

17.2 Complex Extensions of Empirical Mode Decomposition
 17.2.1 Complex Empirical Mode Decomposition
 17.2.2 Rotation Invariant Empirical Mode Decomposition (RIEMD)
 17.2.3 Bivariate Empirical Mode Decomposition (BEMD)

17.3 Addressing the Problem of Uniqueness
17.4 Applications of Complex Extensions of EMD

18 Validation of Complex Representations – Is This Worthwhile?

18.1 Signal Modality Characterisation in \(\mathbb{R} \)
 18.1.1 Surrogate Data Methods
 18.1.2 Test Statistics: The DVV Method

18.2 Testing for the Validity of Complex Representation
 18.2.1 Complex Delay Vector Variance Method (CDVV)

18.3 Quantifying Benefits of Complex Valued Representation
 18.3.1 Pros and Cons of the Complex DVV Method

Appendix A: Some Distinctive Properties of Calculus in \(\mathbb{C} \)

Appendix B: Liouville’s Theorem

Appendix C: Hypercomplex and Clifford Algebras

 C.1 Definitions of Algebraic Notions of Group, Ring and Field
 C.2 Definition of a Vector Space
 C.3 Higher Dimension Algebras
 C.4 The Algebra of Quaternions
 C.5 Clifford Algebras

Appendix D: Real Valued Activation Functions

 D.1 Logistic Sigmoid Activation Function
 D.2 Hyperbolic Tangent Activation Function

Appendix E: Elementary Transcendental Functions (ETF)

Appendix F: The \(\mathcal{O} \) Notation and Standard Vector and Matrix Differentiation