Thermodynamics for the Practicing Engineer

Louis Theodore
Francesco Ricci
Timothy Van Vliet

WILEY
A JOHN WILEY & SONS, INC., PUBLICATION
Ezra Pound [1885–1972]

Men do not understand books until they have had a certain amount of life, or at any rate no man understands a deep book, until he has seen and lived at least part of its contents.

—A, B, C of Reading. Page 88

Contents

Ezra Pound [1885–1972]

Men do not understand books until they have had a certain amount of life, or at any rate no man understands a deep book, until he has seen and lived at least part of its contents.

—A, B, C of Reading. Page 88

PREFACE

Part I INTRODUCTION

1. Basic Calculations

Introduction 3
Units and Dimensions 3
Conversion of Units 7
The Gravitational Constant, g_c 8
Significant Figures and Scientific Notation 8
References 9

2. Process Variables

Introduction 11
Temperature 12
Pressure 14
Moles and Molecular Weights 15
Mass and Volume 20
Viscosity 21
Heat Capacity 23
Thermal Conductivity 24
Reynolds Number 25
pH 26
Vapor Pressure 27
Property Estimation 28
References 29

Part I INTRODUCTION

1. Basic Calculations

Introduction 3
Units and Dimensions 3
Conversion of Units 7
The Gravitational Constant, g_c 8
Significant Figures and Scientific Notation 8
References 9

2. Process Variables

Introduction 11
Temperature 12
Pressure 14
Moles and Molecular Weights 15
Mass and Volume 20
Viscosity 21
Heat Capacity 23
Thermal Conductivity 24
Reynolds Number 25
pH 26
Vapor Pressure 27
Property Estimation 28
References 29

xvii

1

3

11
xii Contents

3. Gas Laws 31

Introduction 31
Boyle’s and Charles’ Laws 32
The Ideal Gas Law 33
Standard Conditions 36
Partial Pressure and Partial Volume 38
Critical and Reduced Properties 40
Non-Ideal Gas Behavior 42
Non-Ideal Mixtures 48
References 50

4. Conservation Laws 53

Introduction 53
The Conservation Laws 54
The Conservation Law for Momentum 56
The Conservation Law for Mass 58
The Conservation Law for Energy 65
References 71

5. Stoichiometry 73

Introduction 73
Combustion of Methane 74
Excess and Limiting Reactant(s) 75
Combustion of Ethane 76
Combustion of Chlorobenzene 80
References 87

6. The Second Law of Thermodynamics 89

Introduction 89
Qualitative Review of the Second Law 90
Quantitative Review of the Second Law 91
Ideal Work and Lost Work 95
The Heat Exchanger Dilemma 99
Chemical Plant and Process Applications 107
The Third Law of Thermodynamics 109
References 110
Part II ENTHALPY EFFECTS

7. Sensible Enthalpy Effects

Introduction 115
The Gibbs Phase Rule (GPR) 115
Enthalpy Values 118
Heat Capacity Values 121
Predictive Methods for Heat Capacity 134
References 136

8. Latent Enthalpy Effects

Introduction 137
The Clausius–Clapeyron (C–C) Equation 138
Predictive Methods: Normal Boiling Point 144
Predictive Methods: Other Temperatures 147
Industrial Applications 148
References 153

9. Enthalpy of Mixing Effects

Introduction 155
Enthalpy-Concentration Diagrams 155
H₂SO₄–H₂O Diagram 158
NaOH–H₂O Diagram 160
Enthalpy of Mixing at Infinite Dilution 162
Evaporator Design 165
References 167

10. Chemical Reaction Enthalpy Effects

Introduction 169
Standard Enthalpy of Formation 170
Standard Enthalpy of Reaction 171
Effect of Temperature on Enthalpy of Reaction 178
Gross and Net Heating Values 191
References 197
11. Phase Equilibrium Principles

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>201</td>
</tr>
<tr>
<td>Psychometric Chart</td>
<td>203</td>
</tr>
<tr>
<td>Raoult’s Law</td>
<td>209</td>
</tr>
<tr>
<td>Henry’s Law</td>
<td>213</td>
</tr>
<tr>
<td>Raoult’s Law vs Henry’s Law</td>
<td>218</td>
</tr>
<tr>
<td>Vapor–Solid Equilibrium</td>
<td>222</td>
</tr>
<tr>
<td>Liquid–Solid Equilibrium</td>
<td>228</td>
</tr>
<tr>
<td>References</td>
<td>229</td>
</tr>
</tbody>
</table>

12. Vapor–Liquid Equilibrium Calculations

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>231</td>
</tr>
<tr>
<td>The DePriester Charts</td>
<td>234</td>
</tr>
<tr>
<td>Raoult’s Law Diagrams</td>
<td>243</td>
</tr>
<tr>
<td>Vapor–Liquid Equilibrium in Nonideal Solutions</td>
<td>249</td>
</tr>
<tr>
<td>NRTL Diags</td>
<td>253</td>
</tr>
<tr>
<td>Wilson Diagrams</td>
<td>262</td>
</tr>
<tr>
<td>Relative Volatility</td>
<td>266</td>
</tr>
<tr>
<td>References</td>
<td>268</td>
</tr>
</tbody>
</table>

13. Chemical Reaction Equilibrium Principles

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>269</td>
</tr>
<tr>
<td>Standard Free Energy of Formation, ΔG_f^0</td>
<td>270</td>
</tr>
<tr>
<td>Standard Free Energy of Reaction, ΔG^0</td>
<td>273</td>
</tr>
<tr>
<td>The Chemical Reaction Equilibrium Constant, K</td>
<td>276</td>
</tr>
<tr>
<td>Effect of Temperature on ΔG^0 and K: Simplified Approach</td>
<td>278</td>
</tr>
<tr>
<td>Effect of Temperature on ΔG^0 and K: α, β, and γ Data</td>
<td>280</td>
</tr>
<tr>
<td>Effect of Temperature on ΔG^0 and K: a, b, and c Data</td>
<td>283</td>
</tr>
<tr>
<td>Procedures to Determine K</td>
<td>286</td>
</tr>
<tr>
<td>References</td>
<td>289</td>
</tr>
</tbody>
</table>

14. Chemical Reaction Equilibrium Applications

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>291</td>
</tr>
<tr>
<td>Rate vs Equilibrium Considerations</td>
<td>292</td>
</tr>
</tbody>
</table>
Contents xv

Extent of Reaction 293
The Reaction Coordinate 295
Gas Phase Reactions 299
Equilibrium Conversion Calculations: Simplified Approach 302
Equilibrium Conversion Calculations: Rigorous Approach 306
Other Reactions 312
References 316

Part IV OTHER TOPICS 317

15. Economic Considerations 319

Introduction 319
Capital Costs 320
Operating Costs 323
Project Evaluation 324
Perturbation Studies in Optimization 325
References 332

16. Open-Ended Problems 333

Introduction 333
Developing Students' Power of Critical Thinking 335
Creativity 336
Brainstorming 337
Inquiring Minds 338
References 342

17. Other ABET Topics 343

Introduction 343
Environmental Management 343
Health, Safety, and Accident Management 348
Numerical Methods 356
Ethics 361
References 363
18. Fuel Options

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>365</td>
</tr>
<tr>
<td>Fuel Properties</td>
<td>366</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>368</td>
</tr>
<tr>
<td>Liquid Fuels</td>
<td>369</td>
</tr>
<tr>
<td>Coal</td>
<td>371</td>
</tr>
<tr>
<td>Fuel Selection</td>
<td>372</td>
</tr>
<tr>
<td>Stoichiometric Calculations</td>
<td>373</td>
</tr>
<tr>
<td>References</td>
<td>375</td>
</tr>
</tbody>
</table>

19. Exergy: The Concept of “Quality Energy”

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>377</td>
</tr>
<tr>
<td>The Quality of Heat vs Work</td>
<td>377</td>
</tr>
<tr>
<td>Exergy</td>
<td>378</td>
</tr>
<tr>
<td>Quantitative Exergy Analysis</td>
<td>379</td>
</tr>
<tr>
<td>Environmental Impact</td>
<td>386</td>
</tr>
<tr>
<td>Exergy Efficiency</td>
<td>388</td>
</tr>
<tr>
<td>References</td>
<td>389</td>
</tr>
</tbody>
</table>

Appendix

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Steam Tables</td>
<td>391</td>
</tr>
<tr>
<td>A. Saturated Steam</td>
<td>392</td>
</tr>
<tr>
<td>B. Superheated Steam</td>
<td>395</td>
</tr>
<tr>
<td>C. Saturated Steam—Ice</td>
<td>398</td>
</tr>
<tr>
<td>II. SI Units</td>
<td>399</td>
</tr>
<tr>
<td>III. Conversion Constants</td>
<td>402</td>
</tr>
<tr>
<td>IV. Selected Common Abbreviations</td>
<td>405</td>
</tr>
<tr>
<td>References</td>
<td>407</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>407</td>
</tr>
<tr>
<td></td>
<td>409</td>
</tr>
</tbody>
</table>