Multimedia Networking

From Theory to Practice

JENQ-NENG HWANG

University of Washington, Seattle

CAMBRIDGE UNIVERSITY PRESS
Contents

Preface xi
Acknowledgements xii
List of abbreviations xiii

1 Introduction to multimedia networking 1
 1.1 Paradigm shift of digital media delivery 1
 1.2 Telematics: infotainment in automobiles 5
 1.3 Major components of multimedia networking 7
 1.4 Organization of the book 9
 References 9

2 Digital speech coding 11
 2.1 LPC modeling and vocoder 13
 2.2 Regular pulse excitation with long-term prediction 16
 2.3 Code-excited linear prediction (CELP) 18
 2.4 Multiple-pulse-excitation coding 21
 References 24

3 Digital audio coding 26
 3.1 Human psychoacoustics 28
 3.2 Subband signal processing and polyphase filter implementation 33
 3.3 MPEG-1 audio layers 37
 3.4 Dolby AC3 audio codec 45
 3.5 MPEG-2 Advanced Audio Coding (AAC) 49
 3.6 MPEG-4 AAC (HE-AAC) 54
 References 60

4 Digital image coding 62
 4.1 Basics of information theory for image compression 63
 4.2 Entropy coding 64
 4.3 Lossy image compression 69
 4.4 Joint Photographic Experts Group (JPEG) 71
 4.5 JPEG2000 84
 References 105
5 Digital video coding

5.1 Evolution of digital video coding
5.2 Compression techniques for digital video coding
5.3 H.263 and H.263+ video coding
5.4 MPEG-1 and MPEG-2 video coding
5.5 MPEG-4 video coding and H.264/AVC
5.6 H.264/MPEG-4 AVC
5.7 Window Media Video 9 (WMV-9)
5.8 Scalable extension of H.264/AVC by HHI

References

6 Digital multimedia broadcasting

6.1 Moving from DVB-T to DVB-H
6.2 T-DMB multimedia broadcasting for portable devices
6.3 ATSC for North America terrestrial video broadcasting
6.4 ISDB digital broadcasting in Japan

References

7 Multimedia quality of service of IP networks

7.1 Layered Internet protocol (IP)
7.2 IP quality of service
7.3 QoS mechanisms
7.4 IP multicast and application-level multicast (ALM)
7.5 Layered multicast of scalable media

References

8 Quality of service issues in streaming architectures

8.1 QoS mechanisms for multimedia streaming
8.2 Windows Media streaming technology by Microsoft
8.3 SureStream streaming technology by RealNetworks
8.4 Internet protocol TV (IPTV)

References

9 Wireless broadband and quality of service

9.1 Evolution of 3G technologies
9.2 Wi-Fi wireless LAN (802.11)
9.3 QoS enhancement support of 802.11
9.4 Worldwide interoperability for microwave access (WiMAX)
9.5 Internetworking between 802.16 and 802.11

References
10 Multimedia over wireless broadband

10.1 End-to-end transport error control 366
10.2 Error resilience and power control at the source coding layer 377
10.3 Multimedia over wireless mesh 380
10.4 Wireless VoIP and scalable video 385

References 405

11 Digital rights management of multimedia

11.1 A generic DRM architecture 411
11.2 Encryption 414
11.3 Digital watermarking 437
11.4 MPEG-21 445

References 465

12 Implementations of multimedia networking

12.1 Speech and audio compression module 467
12.2 Image and video compression module 479
12.3 IP networking module 490
12.4 Audio and video capturing and displaying 497
12.5 Encoding and decoding of video or audio 510
12.6 Building a client–server video streaming system 520
12.7 Creating a small P2P video conferencing system 532

Index 538