Contents

Preface xiii

Acknowledgements xv

List of Abbreviations xvii

1 Introduction 1
Harri Holma and Antti Toskala
1.1 Mobile Voice Subscriber Growth 1
1.2 Mobile Data Usage Growth 2
1.3 Wireline Technologies Evolution 3
1.4 Motivation and Targets for LTE 4
1.5 Overview of LTE 5
1.6 3GPP Family of Technologies 7
1.7 Wireless Spectrum 8
1.8 New Spectrum Identified by WRC-07 10
1.9 LTE-Advanced 11

2 LTE Standardization 13
Antti Toskala
2.1 Introduction 13
2.2 Overview of 3GPP Releases and Process 13
2.3 LTE Targets 14
2.4 LTE Standardization Phases 16
2.5 Evolution Beyond Release 8 18
2.6 LTE-Advanced for IMT-Advanced 19
2.7 LTE Specifications and 3GPP Structure 21
References 22

3 System Architecture Based on 3GPP SAE 23
Atte Länsisalmi and Antti Toskala
3.1 System Architecture Evolution in 3GPP 23
3.2 Basic System Architecture Configuration with only E-UTRAN Access Network 25

References 22
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1</td>
<td>Overview of Basic System Architecture Configuration</td>
<td>25</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Logical Elements in Basic System Architecture Configuration</td>
<td>26</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Self-configuration of S1-MME and X2 interfaces</td>
<td>34</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Interfaces and Protocols in Basic System Architecture Configuration</td>
<td>35</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Roaming in Basic System Architecture Configuration</td>
<td>39</td>
</tr>
<tr>
<td>3.3</td>
<td>System Architecture with E-UTRAN and Legacy 3GPP Access Networks</td>
<td>40</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Overview of 3GPP Inter-working System Architecture Configuration</td>
<td>40</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Additional and Updated Logical Elements in 3GPP Inter-working System Architecture Configuration</td>
<td>42</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Interfaces and Protocols in 3GPP Inter-working System Architecture Configuration</td>
<td>44</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Inter-working with Legacy 3GPP CS Infrastructure</td>
<td>44</td>
</tr>
<tr>
<td>3.4</td>
<td>System Architecture with E-UTRAN and Non-3GPP Access Networks</td>
<td>45</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Overview of 3GPP and Non-3GPP Inter-working System Architecture Configuration</td>
<td>45</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Additional and Updated Logical Elements in 3GPP Inter-working System Architecture Configuration</td>
<td>47</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Interfaces and Protocols in Non-3GPP Inter-working System Architecture Configuration</td>
<td>50</td>
</tr>
<tr>
<td>3.4.4</td>
<td>Roaming in Non-3GPP Inter-working System Architecture Configuration</td>
<td>51</td>
</tr>
<tr>
<td>3.5</td>
<td>Inter-working with cdma2000® Access Networks</td>
<td>51</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Architecture for cdma2000® HRPD Inter-working</td>
<td>51</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Additional and Updated Logical Elements for cdma2000® HRPD Inter-working</td>
<td>54</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Protocols and Interfaces in cdma2000® HRPD Inter-working</td>
<td>55</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Inter-working with cdma2000® 1xRTT</td>
<td>56</td>
</tr>
<tr>
<td>3.6</td>
<td>IMS Architecture</td>
<td>56</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Overview</td>
<td>56</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Session Management and Routing</td>
<td>58</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Databases</td>
<td>59</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Services Elements</td>
<td>59</td>
</tr>
<tr>
<td>3.6.5</td>
<td>Inter-working Elements</td>
<td>59</td>
</tr>
<tr>
<td>3.7</td>
<td>PCC and QoS</td>
<td>60</td>
</tr>
<tr>
<td>3.7.1</td>
<td>PCC</td>
<td>60</td>
</tr>
<tr>
<td>3.7.2</td>
<td>QoS</td>
<td>63</td>
</tr>
<tr>
<td>4</td>
<td>Introduction to OFDMA and SC-FDMA and to MIMO in LTE</td>
<td>67</td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>67</td>
</tr>
<tr>
<td>4.2</td>
<td>LTE Multiple Access Background</td>
<td>67</td>
</tr>
<tr>
<td>4.3</td>
<td>OFDMA Basics</td>
<td>70</td>
</tr>
<tr>
<td>4.4</td>
<td>SC-FDMA Basics</td>
<td>76</td>
</tr>
<tr>
<td>4.5</td>
<td>MIMO Basics</td>
<td>80</td>
</tr>
<tr>
<td>4.6</td>
<td>Summary</td>
<td>82</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>82</td>
</tr>
</tbody>
</table>
5 Physical Layer 83
Antti Toskala, Timo Lunttila, Esa Tiirola, Kari Hooli and Juha Korhonen

5.1 Introduction 83
5.2 Transport Channels and Their Mapping to the Physical Channels 83
5.3 Modulation 85
5.4 Uplink User Data Transmission 86
5.5 Downlink User Data Transmission 89
5.6 Uplink Physical Layer Signaling Transmission 93
 5.6.1 Physical Uplink Control Channel (PUCCH) 94
 5.6.2 PUCCH Configuration 97
 5.6.3 Control Signaling on PUSCH 101
 5.6.4 Uplink Reference Signals 103
5.7 PRACH Structure 109
 5.7.1 Physical Random Access Channel 109
 5.7.2 Preamble Sequence 110
5.8 Downlink Physical Layer Signaling Transmission 112
 5.8.1 Physical Control Format Indicator Channel (PCFICH) 112
 5.8.2 Physical Downlink Control Channel (PDCCH) 113
 5.8.3 Physical HARQ Indicator Channel (PHICH) 115
 5.8.4 Downlink Transmission Modes 115
 5.8.5 Physical Broadcast Channel (PBCH) 116
 5.8.6 Synchronization Signal 117
5.9 Physical Layer Procedures 117
 5.9.1 HARQ Procedure 118
 5.9.2 Timing Advance 119
 5.9.3 Power Control 119
 5.9.4 Paging 120
 5.9.5 Random Access Procedure 120
 5.9.6 Channel Feedback Reporting Procedure 123
 5.9.7 Multiple Input Multiple Output (MIMO) Antenna Technology 129
 5.9.8 Cell Search Procedure 130
 5.9.9 Half Duplex Operation 130
5.10 UE Capability Classes and Supported Features 131
5.11 Physical Layer Measurements 132
 5.11.1 eNodeB Measurements 132
 5.11.2 UE Measurements and Measurement Procedure 133
5.12 Physical Layer Parameter Configuration 133
5.13 Summary 134
References 135

6 LTE Radio Protocols 137
Antti Toskala and Woonhee Hwang

6.1 Introduction 137
6.2 Protocol Architecture 137
6.3 Medium Access Control 139
 6.3.1 Logical Channels 140
 6.3.2 Data Flow in MAC Layer 142
6.4 Radio Link Control Layer
6.4.1 RLC Modes of Operation
6.4.2 Data Flow in RLC Layer
6.5 Packet Data Convergence Protocol
6.6 Radio Resource Control (RRC)
6.6.1 UE States and State Transitions Including Inter-RAT
6.6.2 RRC Functions and Signaling Procedures
6.7 X2 Interface Protocols
6.7.1 Handover on X2 Interface
6.7.2 Load Management
6.8 Early UE Handling in LTE
6.9 Summary
References

7 Mobility
Chris Callender, Harri Holma, Jarkko Koskela and Jussi Reunanen
7.1 Introduction
7.2 Mobility Management in Idle State
7.2.1 Overview of Idle Mode Mobility
7.2.2 Cell Selection and Reselection Process
7.2.3 Tracking Area Optimization
7.3 Intra-LTE Handovers
7.3.1 Procedure
7.3.2 Signaling
7.3.3 Handover Measurements
7.3.4 Automatic Neighbor Relations
7.3.5 Handover Frequency
7.3.6 Handover Delay
7.4 Inter-system Handovers
7.5 Differences in E-UTRAN and UTRAN Mobility
7.6 Summary
References

8 Radio Resource Management
Harri Holma, Troels Kolding, Daniela Laselva, Klaus Pedersen, Claudio Rosa and Ingo Viering
8.1 Introduction
8.2 Overview of RRM Algorithms
8.3 Admission Control and QoS Parameters
8.4 Downlink Dynamic Scheduling and Link Adaptation
8.4.1 Layer 2 Scheduling and Link Adaptation Framework
8.4.2 Frequency Domain Packet Scheduling
8.4.3 Combined Time and Frequency Domain Scheduling Algorithms
8.4.4 Packet Scheduling with MIMO
8.4.5 Downlink Packet Scheduling Illustrations
8.5 Uplink Dynamic Scheduling and Link Adaptation
8.5.1 Signaling to Support Uplink Link Adaptation and Packet Scheduling

7 Mobility
Chris Callender, Harri Holma, Jarkko Koskela and Jussi Reunanen
7.1 Introduction
7.2 Mobility Management in Idle State
7.2.1 Overview of Idle Mode Mobility
7.2.2 Cell Selection and Reselection Process
7.2.3 Tracking Area Optimization
7.3 Intra-LTE Handovers
7.3.1 Procedure
7.3.2 Signaling
7.3.3 Handover Measurements
7.3.4 Automatic Neighbor Relations
7.3.5 Handover Frequency
7.3.6 Handover Delay
7.4 Inter-system Handovers
7.5 Differences in E-UTRAN and UTRAN Mobility
7.6 Summary
References

8 Radio Resource Management
Harri Holma, Troels Kolding, Daniela Laselva, Klaus Pedersen, Claudio Rosa and Ingo Viering
8.1 Introduction
8.2 Overview of RRM Algorithms
8.3 Admission Control and QoS Parameters
8.4 Downlink Dynamic Scheduling and Link Adaptation
8.4.1 Layer 2 Scheduling and Link Adaptation Framework
8.4.2 Frequency Domain Packet Scheduling
8.4.3 Combined Time and Frequency Domain Scheduling Algorithms
8.4.4 Packet Scheduling with MIMO
8.4.5 Downlink Packet Scheduling Illustrations
8.5 Uplink Dynamic Scheduling and Link Adaptation
8.5.1 Signaling to Support Uplink Link Adaptation and Packet Scheduling
11 Performance Requirements

Andrea Ancora, Iwajlo Angelow, Dominique Brunel, Chris Callender, Harri Holma, Peter Muszynski, Earl McCune and Laurent Noël

11.1 Introduction

11.2 Frequency Bands and Channel Arrangements
 11.2.1 Frequency Bands
 11.2.2 Channel Bandwidth
 11.2.3 Channel Arrangements

11.3 eNodeB RF Transmitter
 11.3.1 Operating Band Unwanted Emissions
 11.3.2 Coexistence with Other Systems on Adjacent Carriers Within the Same Operating Band
 11.3.3 Coexistence with Other Systems in Adjacent Operating Bands
 11.3.4 Transmitted Signal Quality

11.4 eNodeB RF Receiver
 11.4.1 Reference Sensitivity Level
 11.4.2 Dynamic Range
 11.4.3 In-channel Selectivity
 11.4.4 Adjacent Channel Selectivity (ACS) and Narrow-band Blocking
 11.4.5 Blocking
 11.4.6 Receiver Spurious Emissions
 11.4.7 Receiver Intermodulation

11.5 eNodeB Demodulation Performance
 11.5.1 PUSCH
 11.5.2 PUCCH
 11.5.3 PRACH

11.6 UE Design Principles and Challenges
 11.6.1 Introduction
 11.6.2 RF Subsystem Design Challenges
 11.6.3 RF–Baseband Interface Design Challenges
 11.6.4 LTE vs HSDPA Baseband Design Complexity

11.7 UE RF Transmitter
 11.7.1 LTE UE Transmitter Requirement
 11.7.2 LTE Transmit Modulation Accuracy, EVM
 11.7.3 Desensitization for Band and Bandwidth Combinations (Desense)
 11.7.4 Transmitter Architecture

11.8 UE RF Receiver Requirements
 11.8.1 Reference Sensitivity Level
 11.8.2 Introduction to UE Self-desensitization Contributors in FDD UEs
11.8.3 ACS, Narrowband Blockers and ADC Design Challenges 341
11.8.4 EVM Contributors: A Comparison Between LTE and WCDMA Receivers 348

11.9 UE Demodulation Performance
11.9.1 Transmission Modes 352
11.9.2 Channel Modeling and Estimation 354
11.9.3 Demodulation Performance 356

11.10 Requirements for Radio Resource Management
11.10.1 Idle State Mobility 360
11.10.2 Connected State Mobility when DRX is Not Active 360
11.10.3 Connected State Mobility when DRX is Active 362
11.10.4 Handover Execution Performance Requirements 363

11.11 Summary 364
References 364

12 LTE TDD Mode 367
Che Xiangguang, Troels Kolding, Peter Skov, Wang Haiming and Antti Toskala

12.1 Introduction 367
12.2 LTE TDD Fundamentals
12.2.1 LTE TDD Frame Structure 369
12.2.2 Asymmetric Uplink/Downlink Capacity Allocation 371
12.2.3 Co-existence with TD-SCDMA 371
12.2.4 Channel Reciprocity 372
12.2.5 Multiple Access Schemes 373

12.3 TDD Control Design
12.3.1 Common Control Channels 374
12.3.2 Sounding Reference Signal 376
12.3.3 HARQ Process and Timing 376
12.3.4 HARQ Design for UL TTI Bundling 379
12.3.5 UL HARQ-ACK/NACK Transmission 380
12.3.6 DL HARQ-ACK/NACK Transmission 380
12.3.7 DL HARQ-ACK/NACK Transmission with SRI and/or CQI over PUCCH 381

12.4 Semi-persistent Scheduling 381
12.5 MIMO and Dedicated Reference Signals 383
12.6 LTE TDD Performance
12.6.1 Link Performance 385
12.6.2 Link Budget and Coverage for TDD System 386
12.6.3 System Level Performance 389
12.6.4 Evolution of LTE TDD 396

12.7 Summary 396
References 397
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.3 Circuit Switched Voice on HSPA</td>
<td>401</td>
</tr>
<tr>
<td>13.4 Enhanced FACH and RACH</td>
<td>404</td>
</tr>
<tr>
<td>13.5 Downlink MIMO and 64QAM</td>
<td>405</td>
</tr>
<tr>
<td>13.6 Dual Carrier HSDPA</td>
<td>407</td>
</tr>
<tr>
<td>13.7 Uplink 16QAM</td>
<td>409</td>
</tr>
<tr>
<td>13.8 Layer 2 Optimization</td>
<td>410</td>
</tr>
<tr>
<td>13.9 Single Frequency Network (SFN) MBMS</td>
<td>411</td>
</tr>
<tr>
<td>13.10 Architecture Evolution</td>
<td>412</td>
</tr>
<tr>
<td>13.11 Summary</td>
<td>414</td>
</tr>
<tr>
<td>References</td>
<td>415</td>
</tr>
</tbody>
</table>

Index

417