Contents

List of Contributors XIII

1 Hydrochlorination of Acetylene Catalyzed by Gold 1
 Marco Conte and Graham J. Hutchings
 1.1 Introduction 1
 1.2 Reactions of Alkynes Using Gold Chloride as Catalyst 2
 1.3 The Correlation of E° with the Activity of Gold for the
 Hydrochlorination of Acetylene 4
 1.3.1 The Initial Correlation 4
 1.3.2 Conceptual Developments of the E° Correlation 5
 1.3.3 Further Study of the Correlation of E° with the Activity
 of Platinum Group Metals 8
 1.3.4 The E° Correlation Applied to Homogeneous and
 Nonhomogeneous Gold Nanoalloys 9
 1.4 Central Role of Au^{3+} and Regeneration of Au/C Catalysts 12
 1.5 Reaction Mechanism of Alkynes Over Au/C Catalysts 14
 1.5.1 Effect of the Individual Components of the Reactants to Au/C 14
 1.5.2 Reaction of Higher Alkynes Over Au/C 16
 1.5.3 Hydrochlorination of 1-hexyne, phenylacetylene, and 2-hexyne
 Over Au/C Catalyst 17
 1.5.4 Computational Studies of the Reaction of Acetylene Over Au/C 21
 1.6 Chemical Origin of the E° Correlation and General Remarks 22
 1.7 Commercial Processes and Economic Aspects of
 Vinyl Chloride Monomer Manufacture 24
 References 25

2 Gold-Catalyzed Reduction Reactions 27
 Avelino Corma and Pedro Serna
 2.1 Introduction 27
 2.2 Hydrogenation of Multiple C=C Bonds. Role of the Gold
 Oxidation State 28
 2.2.1 Introduction 28
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.2 First Solid Gold Catalysts: from Extended Au Surfaces to Highly Dispersed Nanoparticles</td>
<td>28</td>
</tr>
<tr>
<td>2.2.3 Recent Advances in Supported Gold Chemistry: from Highly Dispersed Nanoparticles to Individual Supported Au Atoms</td>
<td>31</td>
</tr>
<tr>
<td>2.2.4 Summary</td>
<td>34</td>
</tr>
<tr>
<td>2.3 Hydrogenation of α,β-Unsaturated Aldehydes</td>
<td>34</td>
</tr>
<tr>
<td>2.3.1 Introduction</td>
<td>34</td>
</tr>
<tr>
<td>2.3.2 Chemistry of Gold Nanoparticles: First Studies and Hypotheses</td>
<td>36</td>
</tr>
<tr>
<td>2.3.3 Strong Metal–Support Interactions: Effect of Electronic Transfers and Decoration on the Gold Nanoparticles</td>
<td>37</td>
</tr>
<tr>
<td>2.3.4 Effect of Morphological Factors: Size and Shape</td>
<td>38</td>
</tr>
<tr>
<td>2.3.5 Summary</td>
<td>39</td>
</tr>
<tr>
<td>2.4 Hydrogenation of Substituted Nitroaromatic Compounds</td>
<td>41</td>
</tr>
<tr>
<td>2.4.1 Introduction</td>
<td>41</td>
</tr>
<tr>
<td>2.4.2 Gold Catalysts for the Production of Substituted Nitro Compounds</td>
<td>42</td>
</tr>
<tr>
<td>2.4.3 Hydrogenation of –NO₂ Groups on Gold Catalysts: Reaction Pathway</td>
<td>43</td>
</tr>
<tr>
<td>2.4.4 Chemoselectivity of Gold Catalysts for the Hydrogenation of NO₂ groups</td>
<td>47</td>
</tr>
<tr>
<td>2.4.5 Activity of Gold Catalysts for the Hydrogenation of NO₂ groups</td>
<td>49</td>
</tr>
<tr>
<td>2.4.6 Summary</td>
<td>51</td>
</tr>
<tr>
<td>References</td>
<td>51</td>
</tr>
</tbody>
</table>

3 Gold-Catalyzed Benzannulations: Asao–Yamamoto Benzopyrylium Pathway

Naoki Asao and Yoshinori Yamamoto

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>55</td>
</tr>
<tr>
<td>3.2 Acetylenic Compounds as 2π Systems</td>
<td>56</td>
</tr>
<tr>
<td>3.3 Enols as 2π Systems</td>
<td>60</td>
</tr>
<tr>
<td>3.4 Enol Ethers as 2π Systems</td>
<td>62</td>
</tr>
<tr>
<td>3.5 Benzynes as 2π Systems</td>
<td>63</td>
</tr>
<tr>
<td>3.6 Synthesis of Phthalazine Derivatives</td>
<td>64</td>
</tr>
<tr>
<td>3.7 Application to the Synthesis of Angucyclinone Antibiotics and Other Applications in Total Synthesis</td>
<td>65</td>
</tr>
<tr>
<td>3.8 Copper-Catalyzed Benzannulations</td>
<td>67</td>
</tr>
<tr>
<td>3.9 Conclusion</td>
<td>68</td>
</tr>
<tr>
<td>References</td>
<td>69</td>
</tr>
</tbody>
</table>

4 Gold-Catalyzed Reactions of Propargyl Esters, Propargyl Alcohols, and Related Compounds

Pablo Mauleon and F. Dean Toste

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction and Extent of This Chapter</td>
<td>75</td>
</tr>
<tr>
<td>4.2 Propargyl Esters</td>
<td>76</td>
</tr>
</tbody>
</table>
4.2.1 General Mechanistic Considerations 76
4.2.1.1 [2,3]- and [3,3]-Rearrangements 77
4.2.1.2 Reversibility 78
4.2.1.3 Ionization 80
4.2.1.4 Double [2,3]-Rearrangements 83
4.2.2 Reactions Initiated by [2,3]-Rearrangements 85
4.2.2.1 The Rautenstrauch Rearrangement 86
4.2.2.2 Alkene Cyclopropanations 87
4.2.2.3 Enantioselective Transformations After [2,3]-Rearrangements 92
4.2.2.4 Nucleophilic Attack on Gold Carbenoids Generated After [2,3]-Rearrangements 94
4.2.3 Reactions Initiated by [3,3]-Rearrangements 96
4.2.3.1 Nucleophilic Double Bonds 97
4.2.3.2 Triple Bonds 99
4.2.3.3 Aromatic Groups 100
4.2.3.4 Alkyl Groups 100
4.2.3.5 Heteroatoms 102
4.2.3.6 Electrophilic Trapping of Vinyl–Gold Intermediates 103
4.2.3.7 Other Processes 104
4.3 Propargyl Ethers 107
4.3.1 Propargyl Vinyl Ethers 107
4.3.2 Propargyl Alkyl Ethers 110
4.3.3 Other Ether Substitution Patterns 113
4.4 Propargyl Alcohols 115
4.4.1 Alkyne Hydration 115
4.4.2 Meyer–Schuster Rearrangements 115
4.4.3 Nucleophilic Substitution at the Propargylic Position 117
4.4.4 Ring Expansions 117
4.4.5 Other Reactions Involving Propargyl Alcohols 119
4.5 Propargyl Amines 121
4.6 Propargyl Carbonates, Amides, and Carbamates 124
4.7 Other Propargyl Substitution Patterns 127
4.8 Conclusion 129
References 130

5 Intramolecular Hydroarylation of Alkynes 135
Paula de Mendoza and Antonio M. Echavarren
5.1 Introduction 135
5.2 Intramolecular Reactions of Arenes with Alkynes 137
5.3 Intramolecular Reactions of Electron-Rich Heteroarenes with Alkynes 142
5.4 Conclusion and Outlook 148
References 148
6 Gold–Alkyne Complexes 153
 Maria Agostina Cinellu
 6.1 Introduction 153
 6.2 Description of the M–π-Bond Interaction in Alkene and Alkyne
 Complexes 154
 6.3 Gold(0) Complexes 155
 6.4 Gold(I) Complexes 155
 6.4.1 Neutral Derivatives 155
 6.4.2 Cationic Derivatives 158
 6.4.3 π-Complexation of Gold(I) at Metal–Alkynyl Units M–C≡C–R 164
 6.5 Gold(III) complexes 167
 6.6 Theoretical Studies 167
 References 171

7 Gold–Alkene Complexes 175
 Maria Agostina Cinellu
 7.1 Introduction 175
 7.2 Gold(0) Derivatives 176
 7.3 Gold(I) Complexes 176
 7.3.1 Neutral Derivatives 176
 7.3.1.1 14-Electron Species 176
 7.3.1.2 16-Electron Species 178
 7.3.2 Cationic Derivatives 181
 7.3.2.1 14-Electron Species 181
 7.3.2.2 16-Electron Species 186
 7.4 Gold(III) Complexes 191
 7.5 Theoretical Studies 192
 References 196

8 Hydration and Hydroalkoxylation of CC Multiple Bonds 201
 J. Henrique Teles
 8.1 Historical Perspective 201
 8.1.1 Addition of Water to Alkynes 201
 8.1.2 Addition of Alcohols to Alkynes 202
 8.2 Gold Catalysts 202
 8.2.1 First Reports of Gold Catalysts 203
 8.2.2 The Discovery of Au(I) Catalysts 204
 8.2.2.1 Catalyst Precursors 206
 8.2.2.2 The Importance of Chemical Equilibria 208
 8.3 Hydration and Hydroalkoxylation of CC Triple Bonds (Alkynes) 209
 8.3.1 Effect of Alcohol Structure 209
 8.3.2 Addition of Water to Alkynes 211
 8.3.3 Addition of Alcohols to Simple Alkynes 215
 8.3.4 Reactions Involving Propargylic Alcohols 217
 8.3.5 Additions to Homopropargylic Alcohols and Other Alkynols 220
8.3.6 Reactions Involving Propargylic Ethers 224
8.4 Hydration and Hydroalkoxylation of CC Double Bonds (Allenes and Alkenes) 226
8.4.1 Addition of Alcohols to Allenes 226
8.4.2 Cyclization of Allenyl and Propargyl Ketones 227
8.4.3 Addition of Alcohols to Alkenes 230
References 234

9 Gold-Catalyzed Aldol and Related Reactions 237
Christoph Hubbert and A. Stephen K. Hashmi
9.1 The Gold-Catalyzed Aldol Reaction 237
9.1.1 Synthetic Scope 239
9.1.1.1 Reactions of Aldehydes with Methyl Isocyanooacetate 239
9.1.1.2 Reactions of Aldehydes with α-Substituted Isonitriles 241
9.1.1.3 Reactions of Aldehydes with Alkyl Isocyanooacetates 242
9.1.1.4 Reactions of Aldehydes with Alkyl Isocyanooacetamides 243
9.1.1.5 Reactions of Aldehydes with α-Isocyanoo Weinreb Amide 244
9.1.1.6 Reactions of Aldehydes with Isocyanoo Phosphonates 245
9.1.1.7 Reactions of Aldehydes with α-Keto Esters 246
9.1.2 Structure of the Ligand 247
9.1.2.1 Internal Cooperativity of Chirality 248
9.1.2.2 Conformation of the Pendant Side Chain 251
9.1.3 Mechanistic Aspects 253
9.1.3.1 The First Transition-State Model 253
9.1.3.2 Structure of the Ferrocenyl–Gold(I) Complex 253
9.1.3.3 Mechanistic Aspects 253
9.2 Related Reactions 257
9.2.1 Synthesis of Dihydroimidazole 257
9.2.2 Mannich Reactions 258
9.2.3 Michael Reactions 259
References 260

10 Gold-Catalyzed Oxidation Reactions: Oxidation of Alkenes 263
Yuanhong Liu
10.1 Introduction 263
10.2 Epoxidation Reactions 263
10.3 Aziridination Reactions 268
10.4 Oxidative Cleavage of C=C Double Bonds 269
10.5 Oxygen Transfer to Carbenoids 270
References 271

11 Gold-Catalyzed Oxygen-Atom Transfer to Alkynes 273
Maria Camila Blanco Jaimes and A. Stephen K. Hashmi
11.1 Introduction 273
11.2 Oxygen-Atom Transfer from NO Groups 273
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2.1 Nitrones</td>
<td>274</td>
</tr>
<tr>
<td>11.2.2 Nitro Compounds</td>
<td>276</td>
</tr>
<tr>
<td>11.2.3 N-Oxides</td>
<td>277</td>
</tr>
<tr>
<td>11.3 Oxygen-Atom Transfer from Sulfoxides</td>
<td>280</td>
</tr>
<tr>
<td>11.4 Oxygen-Atom Transfer from Epoxides</td>
<td>282</td>
</tr>
<tr>
<td>11.5 Gold-Catalyzed Oxidative Coupling</td>
<td>283</td>
</tr>
<tr>
<td>11.5.1 Introduction</td>
<td>283</td>
</tr>
<tr>
<td>11.5.2 Functionalization of C(sp²)-H Bonds</td>
<td>284</td>
</tr>
<tr>
<td>11.5.3 Gold-Catalyzed Nucleophilic Addition–Oxidative Coupling</td>
<td>287</td>
</tr>
<tr>
<td>References</td>
<td>295</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Gold-Catalyzed Additions to Alkenes: N-Nucleophiles</td>
<td>297</td>
</tr>
<tr>
<td>Zigang Li, David A. Capretto, and Chuan He</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>302</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 Gold-Catalyzed Additions to Alkenes: O-Nucleophiles</td>
<td>303</td>
</tr>
<tr>
<td>Zigang Li, David A. Capretto, and Chuan He</td>
<td></td>
</tr>
<tr>
<td>References</td>
<td>307</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 Oxidation of Alcohols and Carbohydrates</td>
<td>309</td>
</tr>
<tr>
<td>Cristina Della Pina, Ermelinda Falletta, and Michele Rossi</td>
<td></td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>309</td>
</tr>
<tr>
<td>14.2 Selective Oxidation of Alcohols</td>
<td>310</td>
</tr>
<tr>
<td>14.2.1 Catalyst Preparation</td>
<td>311</td>
</tr>
<tr>
<td>14.2.2 Oxidation of Diols</td>
<td>312</td>
</tr>
<tr>
<td>14.2.3 Oxidation of Other Polyols</td>
<td>315</td>
</tr>
<tr>
<td>14.2.3.1 Glycerol</td>
<td>315</td>
</tr>
<tr>
<td>14.2.3.2 Sorbitol</td>
<td>317</td>
</tr>
<tr>
<td>14.2.3.3 Other Alcohols</td>
<td>317</td>
</tr>
<tr>
<td>14.2.3.4 Amino Alcohols</td>
<td>318</td>
</tr>
<tr>
<td>14.3 Selective Oxidation of Carbohydrates</td>
<td>320</td>
</tr>
<tr>
<td>14.3.1 Oxidation of Glucose to Sodium Gluconate</td>
<td>321</td>
</tr>
<tr>
<td>14.3.1.1 Kinetics and Modeling</td>
<td>323</td>
</tr>
<tr>
<td>14.3.2 Synthesis of Free Gluconic Acid</td>
<td>325</td>
</tr>
<tr>
<td>14.4 Future Applications</td>
<td>326</td>
</tr>
<tr>
<td>14.5 Conclusion</td>
<td>327</td>
</tr>
<tr>
<td>References</td>
<td>328</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 Applications of Gold-Catalyzed Reactions to Natural Product Synthesis</td>
<td>331</td>
</tr>
<tr>
<td>Matthias Rudolph</td>
<td></td>
</tr>
<tr>
<td>15.1 Introduction</td>
<td>331</td>
</tr>
<tr>
<td>15.2 Addition of Heteroatom Nucleophiles to Alkynes</td>
<td>332</td>
</tr>
<tr>
<td>15.2.1 Hydration of Alkynes: Pterosin B and C</td>
<td>332</td>
</tr>
<tr>
<td>15.2.2 Tandem Reaction Including Hydration of Alkynes, Elimination, and</td>
<td>332</td>
</tr>
<tr>
<td>Conjugate Addition: (+)-Andrachcinidine</td>
<td></td>
</tr>
</tbody>
</table>
15.2.3 Hydroalkoxylation of Alkynes: Bryostatin 16 333
15.2.4 Bis-spiroketalization of Alkynes: A–D Ring of Azaspiracid and
(−)-Ushikulide A 334
15.2.5 Intramolecular Hydroamination of C–C Triple Bonds:
Solenopsin A, Comunesin B, Mersicarpine, and Nitidine 336
15.3 Addition of Heteroatom Nucleophiles to Allenes 339
15.3.1 Intramolecular Hydroalkoxylation of Allenes: Citreoviral,
(−)-Isocyclocapiteline, (−)-Isochrysotricine, and Bejarol 339
15.3.2 Intramolecular Hydroamination of Allenes: Swainsonine 341
15.3.3 Intramolecular Hydroarylation of Allenes: (−)-Rhazinilam 342
15.4 Cycloaditions via Pyrylium Intermediates from
α-Alkynylacrylanes 343
15.5 Rearrangements of Propargyl Esters 346
15.5.1 1,2-Acyl Shift of Propargyl Esters: α-Diazoketone Equivalents 346
15.5.2 1,3-Acyl Shift of Propargyl Esters and Subsequent Tandem
Cyclization of Ene Vinylallenes: Δ⁹(12)-Capnellene 347
15.6 Skeletal Rearrangement of 3-Butynyl-N-Oxides: (±)-Cermizine
and (+)-Lentiginosine 349
15.7 Enyne Cyclizations 350
15.7.1 Silylenol Ethers as Nucleophiles: Platencin, (+)-Lycopaladin A,
and (+)-Fawcettimine 350
15.7.2 Iodoalkynes in Enyne Cyclizations: (+)-Lycopladine A 351
15.7.3 Furan–Yne Cyclization: (±)-Jungianol 352
15.7.4 Tandem Process of Enyne Rearrangement and Prins Cyclization:
(+)-Orientalol and (−)-Englerin A 353
15.7.5 Tandem Enyne Cycloisomerization and Semipinacol Rearrangement:
Ventricos-7(13)-ene 355
15.8 Propargyl Claisen Rearrangement: Azadirachtin 356
15.9 Gold-Catalyzed C–H Activation: (±)-Pterocarpan and Crassifolone 356
15.10 Gold-Catalyzed Allylic Amination: (±)-Angustureine 358
15.11 Catalytic Asymmetric Aldol Reaction of Isocyanoacetates and
Aldehydes 359
References 361

16 Gold-Catalyzed Addition Reactions to Allenes 363
Christian Winter and Norbert Krause
16.1 Introduction 363
16.2 Addition of Heteroatom Nucleophiles 363
16.2.1 Addition of Oxygen Nucleophiles 364
16.2.2 Addition of Nitrogen Nucleophiles 376
16.2.3 Addition of Sulfur Nucleophiles 381
16.3 Addition of Carbon Nucleophiles 382
16.4 Conclusion 386
References 386

Index 391