4G WIRELESS VIDEO COMMUNICATIONS

Haohong Wang
Marvell Semiconductors, USA

Lisimachos P. Kondi
University of Ioannina, Greece

Ajay Luthra
Motorola, USA

Song Ci
University of Nebraska-Lincoln, USA
Contents

Foreword xiii

Preface xv

About the Authors xxi

About the Series Editors xxv

1 **Introduction** 1

1.1 Why 4G? 1

1.2 4G Status and Key Technologies 3

1.2.1 3GPP LTE 3

1.2.2 Mobile WiMAX 4

1.3 Video Over Wireless 5

1.3.1 Video Compression Basics 5

1.3.2 Video Coding Standards 9

1.3.3 Error Resilience 10

1.3.4 Network Integration 12

1.3.5 Cross-Layer Design for Wireless Video Delivery 14

1.4 Challenges and Opportunities for 4G Wireless Video 15

References 17

2 **Wireless Communications and Networking** 19

2.1 Characteristics and Modeling of Wireless Channels 19

2.1.1 Degradation in Radio Propagation 19

2.1.2 Rayleigh Fading Channel 20

2.2 Adaptive Modulation and Coding 23

2.2.1 Basics of Modulation Schemes 23

2.2.2 System Model of AMC 25

2.2.3 Channel Quality Estimation and Prediction 26

2.2.4 Modulation and Coding Parameter Adaptation 28
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.5</td>
<td>Estimation Error and Delay in AMC</td>
<td>30</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Selection of Adaptation Interval</td>
<td>30</td>
</tr>
<tr>
<td>2.3</td>
<td>Orthogonal Frequency Division Multiplexing</td>
<td>31</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Background</td>
<td>31</td>
</tr>
<tr>
<td>2.3.2</td>
<td>System Model and Implementation</td>
<td>31</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Pros and Cons</td>
<td>33</td>
</tr>
<tr>
<td>2.4</td>
<td>Multiple-Input Multiple-Output Systems</td>
<td>34</td>
</tr>
<tr>
<td>2.4.1</td>
<td>MIMO System Model</td>
<td>34</td>
</tr>
<tr>
<td>2.4.2</td>
<td>MIMO Capacity Gain: Multiplexing</td>
<td>35</td>
</tr>
<tr>
<td>2.4.3</td>
<td>MIMO Diversity Gain: Beamforming</td>
<td>35</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Diversity-Multiplexing Trade-offs</td>
<td>35</td>
</tr>
<tr>
<td>2.4.5</td>
<td>Space-Time Coding</td>
<td>36</td>
</tr>
<tr>
<td>2.5</td>
<td>Cross-Layer Design of AMC and HARQ</td>
<td>37</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Background</td>
<td>38</td>
</tr>
<tr>
<td>2.5.2</td>
<td>System Modeling</td>
<td>39</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Cross-Layer Design</td>
<td>41</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Performance Analysis</td>
<td>44</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Performance</td>
<td>45</td>
</tr>
<tr>
<td>2.6</td>
<td>Wireless Networking</td>
<td>47</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Layering Network Architectures</td>
<td>48</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Network Service Models</td>
<td>50</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Multiplexing Methods</td>
<td>51</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Connection Management in IP-Based Data Networks</td>
<td>53</td>
</tr>
<tr>
<td>2.6.5</td>
<td>QoS Handoff</td>
<td>54</td>
</tr>
<tr>
<td>2.7</td>
<td>Summary</td>
<td>55</td>
</tr>
<tr>
<td>References</td>
<td>56</td>
<td></td>
</tr>
</tbody>
</table>

3 Video Coding and Communications

3.1 Digital Video Compression – Why and How Much? | 59
3.2 Basics | 60
3.2.1 Video Formats | 60
3.2.1.1 Scanning | 60
3.2.1.2 Color | 61
3.2.1.3 Luminance, Luma, Chrominance, Chroma | 64
3.3 Information Theory | 64
3.3.1 Entropy and Mutual Information | 65
3.3.2 Encoding of an Information Source | 66
3.3.3 Variable Length Coding | 68
3.3.4 Quantization | 71
3.4 Encoder Architectures | 73
3.4.1 DPCM | 73
3.4.2 Hybrid Transform-DPCM Architecture | 77
3.4.3 A Typical Hybrid Transform DPCM-based Video Codec | 79
3.4.4 Motion Compensation | 82
3.4.5 DCT and Quantization | 83
3.4.6 Procedures Performed at the Decoder | 84
5.2.4 Quantization and Scaling 151
5.2.5 Scanning 151
5.2.6 Variable Length Lossless Codecs 152
 5.2.6.1 Exp-Golomb Code 153
 5.2.6.2 CAVLC (Context Adaptive VLC) 154
 5.2.6.3 CABAC 154
5.2.7 Deblocking Filter 155
5.2.8 Hierarchy in the Coded Video 156
 5.2.8.1 Basic Picture Types (I, P, B, BR) 157
 5.2.8.2 SP and SI Pictures 157
5.2.9 Buffers 158
5.2.10 Encapsulation/Packetization 159
5.2.11 Profiles 160
 5.2.11.1 Baseline Profile 160
 5.2.11.2 Extended Profile 162
 5.2.11.3 Main Profile 162
 5.2.11.4 High Profile 162
 5.2.11.5 High10 Profile 163
 5.2.11.6 High 4:2:2 Profile 163
 5.2.11.7 High 4:4:4 Predictive Profile 163
 5.2.11.8 Intra Only Profiles 163
5.2.12 Levels 163
 5.2.12.1 Maximum Bit Rates, Picture Sizes and Frame Rates 164
 5.2.12.2 Maximum CPB, DPB and Reference Frames 164
5.2.13 Parameter Sets 167
 5.2.13.1 Sequence Parameter Sets (SPS) 167
 5.2.13.2 Picture Parameter Sets (PPS) 167
5.2.14 Supplemental Enhancement Information (SEI) 167
5.2.15 Subjective Tests 168
References 168

6 Content Analysis for Communications 171
6.1 Introduction 171
6.2 Content Analysis 173
 6.2.1 Low-Level Feature Extraction 174
 6.2.1.1 Edge 174
 6.2.1.2 Shape 176
 6.2.1.3 Color 177
 6.2.1.4 Texture 177
 6.2.1.5 Motion 178
 6.2.1.6 Mathematical Morphology 178
 6.2.2 Image Segmentation 179
 6.2.2.1 Threshold and Boundary Based Segmentation 181
 6.2.2.2 Clustering Based Segmentation 181
 6.2.2.3 Region Based Approach 181
 6.2.2.4 Adaptive Perceptual Color-Texture Segmentation 182
8.3 Application Layer
8.4 Rate Control at the Transport Layer
 8.4.1 Background
 8.4.2 System Model
 8.4.3 Network Setting
 8.4.4 Problem Formulation
 8.4.5 Problem Solution
 8.4.6 Performance Evaluation
8.5 Routing at the Network Layer
 8.5.1 Background
 8.5.2 System Model
 8.5.3 Routing Metric
 8.5.4 Problem Formulation
 8.5.5 Problem Solution
 8.5.6 Implementation Considerations
 8.5.7 Performance Evaluation
8.6 Content-Aware Real-Time Video Streaming
 8.6.1 Background
 8.6.2 Background
 8.6.3 Problem Formulation
 8.6.4 Routing Based on Priority Queuing
 8.6.5 Problem Solution
 8.6.6 Performance Evaluation
8.7 Cross-Layer Optimization for Video Summary Transmission
 8.7.1 Background
 8.7.2 Problem Formulation
 8.7.3 System Model
 8.7.4 Link Adaptation for Good Content Coverage
 8.7.5 Problem Solution
 8.7.6 Performance Evaluation
8.8 Conclusions

References

9 Content-based Video Communications
9.1 Network-Adaptive Video Object Encoding
9.2 Joint Source Coding and Unequal Error Protection
 9.2.1 Problem Formulation
 9.2.1.1 System Model
 9.2.1.2 Channel Model
 9.2.1.3 Expected Distortion
 9.2.1.4 Optimization Formulation
 9.2.2 Solution and Implementation Details
 9.2.2.1 Packetization and Error Concealment
 9.2.2.2 Expected Distortion
 9.2.2.3 Optimal Solution
 9.2.3 Application on Energy-Efficient Wireless Network
9.2.3.1 Channel Model 301
9.2.3.2 Experimental Results 302
9.2.4 Application on Differentiated Services Networks 303

9.3 Joint Source-Channel Coding with Utilization of Data Hiding 305
9.3.1 Hiding Shape in Texture 308
9.3.2 Joint Source-Channel Coding 309
9.3.3 Joint Source-Channel Coding and Data Hiding 311
9.3.3.1 System Model 311
9.3.3.2 Channel Model 312
9.3.3.3 Expected Distortion 312
9.3.3.4 Implementation Details 313
9.3.4 Experimental Results 315

References 322

10 AVC/H.264 Application – Digital TV 325

10.1 Introduction 325
10.1.1 Encoder Flexibility 326
10.2 Random Access 326
10.2.1 GOP Bazaar 327
10.2.1.1 MPEG-2 Like, 2B, GOP Structure 327
10.2.1.2 Reference B and Hierarchical GOP structures 330
10.2.1.3 Low Delay Structure 331
10.2.1.4 Editable Structure 331
10.2.1.5 Others 332
10.2.2 Buffers, Before and After 332
10.2.2.1 Coded Picture Buffer 332
10.2.2.2 Decoded Picture Buffer (DPB) 334
10.3 Bitstream Splicing 335
10.4 Trick Modes 337
10.4.1 Fast Forward 338
10.4.2 Reverse 338
10.4.3 Pause 338
10.5 Carriage of AVC/H.264 Over MPEG-2 Systems 338
10.5.1 Packetization 339
10.5.1.1 Packetized Elementary Stream (PES) 340
10.5.1.2 Transport Stream (TS) 340
10.5.1.3 Program Stream 343
10.5.2 Audio Video Synchronization 344
10.5.3 Transmitter and Receiver Clock Synchronization 344
10.5.4 System Target Decoder and Timing Model 344

References 345

11 Interactive Video Communications 347

11.1 Video Conferencing and Telephony 347
11.1.1 IP and Broadband Video Telephony 347
11.1.2 Wireless Video Telephony 348
11.1.3 3G-324M Protocol 348
 11.1.3.1 Multiplexing and Error Handling 349
 11.1.3.2 Adaptation Layers 350
 11.1.3.3 The Control Channel 350
 11.1.3.4 Audio and Video Channels 350
 11.1.3.5 Call Setup 350
11.2 Region-of-Interest Video Communications 351
 11.2.1 ROI based Bit Allocation 351
 11.2.1.1 Quality Metric for ROI Video 351
 11.2.1.2 Bit Allocation Scheme for ROI Video 353
 11.2.1.3 Bit Allocation Models 354
 11.2.2 Content Adaptive Background Skipping 356
 11.2.2.1 Content-based Skip Mode Decision 357
 11.2.2.2 p Budget Adjustment 360
References 366

12 Wireless Video Streaming 369
12.1 Introduction 369
12.2 Streaming System Architecture 370
 12.2.1 Video Compression 370
 12.2.2 Application Layer QoS Control 372
 12.2.2.1 Rate Control 372
 12.2.2.2 Rate Shaping 373
 12.2.2.3 Error Control 374
 12.2.3 Protocols 374
 12.2.3.1 Transport Protocols 375
 12.2.4 Video/Audio Synchronization 376
12.3 Delay-Constrained Retransmission 377
 12.3.1 Receiver-Based Control 378
 12.3.2 Sender-Based Control 378
 12.3.3 Hybrid Control 379
 12.3.4 Rate-Distortion Optimal Retransmission 379
12.4 Considerations for Wireless Video Streaming 382
 12.4.1 Cross-Layer Optimization and Physical Layer Consideration 383
12.5 P2P Video Streaming 384
References 385

Index 389