CONTENTS

Preface v
Jacob Fish (Rensselaer)

List of Contributors xxi

I INFORMATION-PASSING MULTISCALE METHODS IN SPACE

1 Mixed multiscale finite element methods on adaptive unstructured grids using limited global information 3
J. E. Aarnes, Y. Efendiev, T. Y. Hou, and L. Jiang

1.1 Introduction 3
1.2 Preliminaries and motivation 5
1.3 Mixed multiscale finite element method for flow equations 7
1.4 Numerical results 10
1.5 Analysis of global mixed MsFEM on unstructured grid 16
 1.5.1 Remarks on time dependent problems 24
1.6 Conclusions 26
References 27

2 Formulations of mechanics problems for materials with self-similar multiscale microstructure 31
R.C. Picu and M.A. Soare

2.1 Introduction 31
2.2 The geometry of self-similar structures 35
2.3 Basic concepts in fractional calculus 36
 2.3.1 Non-local fractional operators 36
 2.3.2 Local fractional operators 37
 2.3.2.1 Fractional differential operators 37
 2.3.3 Fractional integral operators 39
2.4 Mechanics boundary value problems on materials with fractal microstructure 41
 2.4.1 Iterative approaches 43
 2.4.2 Reformulations of governing equations 44
 2.4.2.1 Method used for "homogeneous" fractal medium 44
 2.4.2.2 Methods using local fractional operators 45
 2.4.2.2.1 General formulation 45
 2.4.2.2.2 Examples 49
2.5 Closure 53
References 54
3 N-scale model reduction theory

Jacob Fish and Zheng Yuan

3.1 Introduction 57
3.2 The N-scale mathematical homogenization 58
3.3 Residual-free governing equations at multiple scales 61
3.4 Multiple-scale reduced order model 63
3.5 Reduced order unit cell problems 70
3.6 Summary of the computational procedure 76
3.7 Example: three scale analysis 78
3.8 Appendix 86
3.9 Acknowledgment 87
References 87

II CONCURRENT MULTISCALE METHODS IN SPACE

4 Concurrent coupling of atomistic and continuum models

Ted Belytschko, Robert Gracie, and Mei Xu

4.1 Introduction 93
4.2 Classification of methods 96
4.3 Mechanical equilibrium methods 98
 4.3.1 Direct and master-slave coupling 98
 4.3.2 ONIOM method 101
 4.3.3 Bridging domain method 104
 4.3.3.1 Ghost forces 108
 4.3.3.2 Stability of Lagrange multiplier methods 111
 4.3.4 Quasicontinuum method 112
4.4 Molecular dynamics systems 113
 4.4.1 Conservation properties of bridging domain method 115
 4.4.1.1 Conservation of linear momentum 116
 4.4.1.2 Conservation of energy 116
 4.4.2 Master-slave and handshake methods 117
 4.4.3 Bridging scale method 118
4.5 Numerical results 119
 4.5.1 Molecular/continuum dynamics with bridging domain method 119
 4.5.1.1 One-dimensional studies 119
 4.5.1.2 Two-dimensional studies 123
 4.5.2 Fracture of defected graphene sheets by QM/MM and QM/CM methods 125
 4.5.3 Crack propagation in graphene sheet: comparison with Griffith's formula 129
4.6 Acknowledgment 130
References 130
5 Coarse-grained molecular dynamics: concurrent multiscale simulation at finite temperature

Robert E. Rudd

5.1 Coupling atomistic and continuum length scales 134
5.2 Coarse graining formalism 137
 5.2.1 Shape functions 138
5.3 The CGMD Hamiltonian 139
 5.3.1 Harmonic crystals 141
 5.3.2 How harmonic CGMD differs from FEM 143
 5.3.3 Anharmonic forces 143
5.4 Non-equilibrium effects 144
5.5 Practical details 146
 5.5.1 Shape functions in reciprocal space 147
5.6 Performance tests 148
 5.6.1 Phonon spectra 148
 5.6.2 The finite temperature tantalum CG spectrum 151
 5.6.3 Dynamics and scattering 155
5.7 Conclusion 160
References 161

6 Blending methods for coupling atomistic and continuum models

P. Bochev, R. Lehoucq, M. Parks, S. Badia, and M. Gunzburger

6.1 Introduction 165
 6.1.1 An overview of AtC blending methods 166
 6.1.2 Notation 168
6.2 Atomistic and continuum models 168
 6.2.1 Force-based models 168
 6.2.1.1 The atomistic model 169
 6.2.1.2 The continuum model 170
 6.2.2 Energy-based models 170
 6.2.2.1 The atomistic model 171
 6.2.2.2 The continuum model 171
6.3 Force-based blending 172
 6.3.1 An abstract AtC blending method 172
 6.3.2 Blending functions 174
 6.3.3 Assumption 174
 6.3.4 Enforcing the constraints 174
 6.3.4.1 Blending constraint operators 175
 6.3.5 Consistency and patch tests 177
 6.3.6 Definition [Consistency test problem] 177
 6.3.7 Definition [Patch test problem] 177
Contents

6.3.8 Definition [Passing a patch test problem] 177
6.3.9 Definition [AtC consistency] 177
6.3.10 Blended atomistic and continuum functionals 177
6.3.11 Taxonomy of AtC blending methods 179
 6.3.11.1 Methods of type I 179
6.3.12 Theorem 180
 6.3.12.1 Methods of type II 180
6.3.13 Theorem 180
 6.3.13.1 Methods of type III 181
6.3.14 Theorem 181
 6.3.14.1 Methods of type IV 181
6.3.15 Summary and comparison of force-based AtC
 blending methods 181
6.4 Energy-based blending 182
 6.4.1 An abstract AtC blending method 182
6.4.2 Enforcing the constraints 183
6.4.3 Taxonomy of AtC blending methods 184
6.5 Generalized continua 185
6.6 Conclusions 186
References 186

III SPACE-TIME SCALE BRIDGING METHODS

7 Principles of systematic upscaling 193
 Achi Brandt

7.1 Introduction 193
 7.1.1 Systematic upscaling (SU) 195
 7.1.2 Difference from adhoc multiscale modelling 195
 7.1.3 Other numerical upscaling methods 196
 7.1.4 Features of Systematic Upscaling 198
 7.1.5 Plan of this article 198
7.2 Systematic upscaling (SU): an outline 199
 7.2.1 Local equations and interactions 199
 7.2.2 Coarsening 199
 7.2.2.1 Examples of such fine-to-coarse
 transformations C 199
 7.2.3 Generalized interpolation 200
 7.2.4 The general coarsening criterion 200
 7.2.5 Experimental results 201
7.3 Derivation of coarse equations 202
 7.3.1 Basic hypothesis: localness of coarsening 202
 7.3.1.1 Dependence table 202
 7.3.1.2 Coarse Hamiltonian 203
 7.3.2 Example 204
7.4 Window developments 205
7.5 Some special situations 206
7.6 Extensions in brief 207
 7.6.1 Long-range interactions 207
 7.6.2 Dynamical systems 207
 7.6.3 Stochastic coarsening 208
 7.6.4 Joint H^c 209
 7.6.5 Complex fluids 209
 7.6.6 Low temperatures (example) 209
 7.6.7 Multiscale annealing 209
 7.6.8 Coarse-level computability of fine observables 210
 7.6.9 Determinism and stochasticity 210
 7.6.10 Upscaling from quantum mechanics to molecular dynamics 210

References 210

8 Equation-free computation: an overview of patch dynamics 216
 G. Samaey, A. J. Roberts, and I. G. Kevrekidis

 8.1 Introduction 216
 8.2 Equation-free multiscale framework 217
 8.2.1 Definitions 217
 8.2.2 The coarse time-stepper 219
 8.2.2.1 A remark on notation 220
 8.2.3 The gap-tooth scheme and patch dynamics 220
 8.3 Model homogenization problems 221
 8.3.1 Parabolic homogenization problem 222
 8.3.2 Hyperbolic homogenization problem 223
 8.4 The gap-tooth scheme 223
 8.4.1 Formulation 224
 8.4.1.1 Boundary constraints 225
 8.4.1.2 Initial conditions 226
 8.4.1.3 The algorithm 226
 8.4.2 Consistency and stability 226
 8.4.3 Discussion 227
 8.5 Patch dynamics with buffers 228
 8.5.1 Formulation 228
 8.5.1.1 Initial condition 229
 8.5.1.2 Boundary conditions 230
 8.5.1.3 The algorithm 230
 8.5.2 Numerical illustration 231
 8.5.3 Consistency and stability 232
 8.5.4 Application to advection problems 234
 8.5.4.1 Consistency 234
 8.5.4.2 Third order, upwind biased scheme 235
 8.5.4.3 Non-conservation form 236
9 On multiscale computational mechanics with time-space homogenization

P. Ladevèze, David Néron, Jean-Charles Passieux

9.1 Introduction 247

9.2 The reference problem 249
 9.2.1 State laws 250
 9.2.2 Compatibility conditions and equilibrium equations 251
 9.2.3 Formulation of the reference problem 252

9.3 Reformulation of the problem with structure decomposition 252
 9.3.1 Admissibility conditions for Substructure Ω_E 254
 9.3.2 Interface behavior 255
 9.3.3 Reformulation of the reference problem 256

9.4 Multiscale description in the time-space domain $[0, T] \times \Omega$ 256
 9.4.1 A two-scale description of the unknowns 256
 9.4.2 Admissibility of the macro quantities 257

9.5 The multiscale computational strategy 258
 9.5.1 The driving force of the strategy 258
 9.5.2 The local stage at Iteration $n + 1$ 259
 9.5.3 The linear stage at Iteration $n + 1$ 260
 9.5.3.1 The micro problems defined over each $[0, T] \times \Omega_E$ and $[0, T] \times \Omega_E$ 261
 9.5.3.2 The macro problem defined over $[0, T] \times \Omega$ 262
 9.5.3.3 Resolution of the linear stage 262
 9.5.4 Choice of the parameters (H, h) and convergence of the algorithm 262
 9.5.5 First example 263

9.6 The radial time-space approximation 266
 9.6.1 General properties 268
 9.6.2 Illustration 269
 9.6.3 Practical implementation 269
 9.6.4 Reformulation of the linear stage at Iteration $n + 1$ 271
 9.6.4.1 Rewriting of a micro problem over $[0, T] \times \Omega_E$ 271
 9.6.4.2 Choice of admissible radial time-space functions 272
 9.6.4.3 Definition of the best approximation 273
 9.6.4.4 Practical resolution technique 273
9.6.5 Numerical example of the resolution of a micro problem 274
9.7 Conclusions 277
References 278

IV ADAPTIVITY, ERROR ESTIMATION AND UNCERTAINTY QUANTIFICATION

10 Estimation and control of modeling error: a general approach to multiscale modeling 285
J.T. Oden, S. Prudhomme, P.T. Bauman, and L. Chamoin
10.1 Problem setting 285
10.2 The general theory of modeling error estimation 287
10.2.1 The error estimate 288
10.3 A large-scale molecular statics model 289
10.4 The family of six algorithms governing multiscale modeling of polymer densification 290
10.4.1 Polymerization: kinetic monte carlo method 290
10.4.2 Molecular potentials 292
10.4.3 Densification algorithm: inexact Newton-Raphson with trust region 292
10.4.4 Algorithms for computing surrogate models 292
10.4.4.1 Virtual experiments 293
10.4.4.2 The interface 293
10.4.4.3 Residual force calculation 293
10.4.5 The adjoint problem 293
10.4.6 The goals algorithm 294
10.5 Representative results 296
10.5.1 Verification of error estimator and adaptive strategy 296
10.6 Extensions 299
10.7 Concluding comments 303
10.8 Acknowledgments 303
References 303

11 Error estimates for multiscale operator decomposition for multiphysics models 305
D. Estep
11.1 Introduction 305
11.1.1 Challenges and goals of multiscale, multiphysics models 308
11.1.2 Multiscale, multidiscretization operator decomposition 309
11.2 The key is stability. But what is stability... and stability of what? 313
11.2.1 Pointwise stability of the Lorenz problem 313
11.2.2 Classic \textit{a priori} stability analysis 316
11.2.3 Theorem 318
11.2.4 Stability for stationary problems 318
11.2.5 The meaning of stability depends on the information to be computed 320
11.3 The tools for quantifying stability properties: functionals, duality, and adjoint operators 323
11.3.1 Functionals and computing information 323
11.3.2 Theorem 325
11.3.3 Theorem 326
11.3.4 Theorem 326
11.3.5 The adjoint operator 326
11.3.6 Theorem 329
11.3.7 Four good reasons to use adjoints 329
11.3.8 Theorem 329
11.3.9 Theorem 329
11.3.10 Theorem 329
11.3.11 Adjoint operators for linear differential equations 330
11.4 \textit{A posteriori} error analysis using adjoints 334
11.4.1 Discretization of elliptic problems 336
11.4.2 \textit{A posteriori} analysis for elliptic problems 337
11.4.3 Theorem 337
11.4.4 Adjoint analysis for nonlinear problems 339
11.4.5 Discretization of evolution problems 343
11.4.6 Analysis for discretizations of evolution problems 345
11.4.7 Theorem 346
11.4.8 Theorem 346
11.4.9 Theorem 347
11.4.10 General comments on \textit{a posteriori} analysis 350
11.5 \textit{A posteriori} error estimates and adaptive mesh refinement 351
11.5.1 Adaptive mesh refinement in space 352
11.5.2 Adaptive mesh refinement for evolutionary problems 356
11.6 Multiscale operator decomposition 358
11.6.1 Multiscale decomposition of triangular systems of elliptic problems 358
A linear algebra example 362
Description of the \textit{a posteriori} analysis 364
11.6.2 Theorem 366
11.6.3 Multiscale decomposition of reaction-diffusion problems 367
A linear algebra example 370
Description of the hybrid \textit{a posteriori–a priori} error analysis 372
11.6.4 Theorem 374
Contents

Numerical examples 375
11.6.5 Multiscale decomposition of a fluid–solid conjugate
heat transfer problem 376
Description of an a posteriori error analysis 378
11.6.6 Theorem 380
Loss of order and flux correction 382
11.6.7 Theorem 384
11.7 The effect of iteration 385
11.8 Conclusion 386
References 387

V MULTISCALE SOFTWARE

12 Component software for multiscale simulation 393
M.S. Shephard, M.A. Nuggehally, B. FranzDale, R.C. Picu,
J. Fish, O. Klaas, and M.W. Beall
12.1 Introduction 393
12.2 Abstraction of adaptive multiscale simulation 394
12.2.1 Current multiscale simulation implementations 394
12.2.2 Multiscale simulation abstraction 395
12.3 Multiscale simulation components and structures 399
12.3.1 Models 399
12.3.1.1 Abstract model 400
12.3.2 Domains 401
12.3.3 Fields 404
12.4 Component tools for crystalline materials 405
12.4.1 Defining the grain structure 405
12.4.2 Defining and storing the atomistic information 406
12.4.3 A fast atomistic relaxation scheme 408
12.5 A concurrent atomistic/continuum adaptive multiscale
simulation tool 410
12.5.1 Concurrent atomistic/continuum multiscale
formulation 410
12.5.2 Analysis components for multiscale simulation tool 414
12.5.2.1 Atomistic component 414
12.5.2.2 Continuum component 414
12.5.3 Adaptive solution procedure 415
12.5.4 An example result 416
12.6 Acknowledgments 417
References 417

VI SELECTED MULTISCALE APPLICATIONS

13 Finite temperature multiscale methods for silicon NEMS 425
Z. Tang and N. R. Aluru
13.1 Introduction 425
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.2 1</td>
<td>Finite temperature QC method</td>
<td>427</td>
</tr>
<tr>
<td>13.2.1</td>
<td>Continuum level description</td>
<td>429</td>
</tr>
<tr>
<td>13.2.2</td>
<td>Atomistic level description</td>
<td>430</td>
</tr>
<tr>
<td>13.2.3</td>
<td>QC method at classical zero temperature</td>
<td>431</td>
</tr>
<tr>
<td>13.2.4</td>
<td>Finite temperature formulation</td>
<td>434</td>
</tr>
<tr>
<td>13.2.4.1</td>
<td>Real space quasiharmonic (QHM) model</td>
<td>437</td>
</tr>
<tr>
<td>13.2.4.2</td>
<td>Local quasiharmonic (LQHM) model</td>
<td>438</td>
</tr>
<tr>
<td>13.2.4.3</td>
<td>(k)-space Quasiharmonic (QHMK) Model</td>
<td>439</td>
</tr>
<tr>
<td>13.2.5</td>
<td>Results and discussion</td>
<td>441</td>
</tr>
<tr>
<td>13.2.5.1</td>
<td>Lattice constants</td>
<td>441</td>
</tr>
<tr>
<td>13.2.5.2</td>
<td>Strain and temperature effects on PDOS and Grüneisen parameters</td>
<td>441</td>
</tr>
<tr>
<td>13.2.5.3</td>
<td>Bulk elastic constants</td>
<td>446</td>
</tr>
<tr>
<td>13.2.5.4</td>
<td>Mechanical behavior of nanostructures under external loads</td>
<td>449</td>
</tr>
<tr>
<td>13.3 1</td>
<td>Local phonon density of states approach</td>
<td>454</td>
</tr>
<tr>
<td>13.3.1</td>
<td>Theory</td>
<td>454</td>
</tr>
<tr>
<td>13.3.1.1</td>
<td>Lattice dynamics</td>
<td>454</td>
</tr>
<tr>
<td>13.3.1.2</td>
<td>LPDOS and local thermodynamic properties</td>
<td>455</td>
</tr>
<tr>
<td>13.3.1.3</td>
<td>Phonon GF and the recursion method</td>
<td>456</td>
</tr>
<tr>
<td>13.3.1.4</td>
<td>Local mechanical properties</td>
<td>459</td>
</tr>
<tr>
<td>13.3.2</td>
<td>Semilocal model</td>
<td>460</td>
</tr>
<tr>
<td>13.3.3</td>
<td>Silicon surface models</td>
<td>466</td>
</tr>
<tr>
<td>13.3.4</td>
<td>Results and discussion</td>
<td>467</td>
</tr>
<tr>
<td>13.3.4.1</td>
<td>Thermal and mechanical properties of bulk silicon</td>
<td>467</td>
</tr>
<tr>
<td>13.3.4.2</td>
<td>LPDOS of bulk silicon and nanoscale silicon structures</td>
<td>468</td>
</tr>
<tr>
<td>13.3.4.3</td>
<td>Local thermal properties</td>
<td>470</td>
</tr>
<tr>
<td>13.3.4.4</td>
<td>Mechanical properties</td>
<td>473</td>
</tr>
<tr>
<td>13.4 1</td>
<td>Conclusion</td>
<td>475</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>476</td>
</tr>
</tbody>
</table>

14 Multiscale Materials

Sidney Yip

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.1 1</td>
<td>Materials modeling and simulation (computational materials)</td>
<td>481</td>
</tr>
<tr>
<td>14.1.1</td>
<td>Characteristic length/time scales</td>
<td>482</td>
</tr>
<tr>
<td>14.1.2</td>
<td>Intellectual merits</td>
<td>483</td>
</tr>
<tr>
<td>14.1.2.1</td>
<td>Exceptional bandwidth</td>
<td>485</td>
</tr>
<tr>
<td>14.1.2.2</td>
<td>Removing empiricism</td>
<td>485</td>
</tr>
<tr>
<td>14.1.2.3</td>
<td>Visual insights</td>
<td>485</td>
</tr>
<tr>
<td>14.2 1</td>
<td>Atomistic measures of strength and deformation</td>
<td>486</td>
</tr>
<tr>
<td>14.2.1</td>
<td>Limits to strength: homogeneous deformation</td>
<td>486</td>
</tr>
<tr>
<td>14.2.2</td>
<td>Soft modes</td>
<td>489</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>14.2.3</td>
<td>Microstructural effects</td>
<td>491</td>
</tr>
<tr>
<td>14.2.4</td>
<td>Instability in nano-indentation</td>
<td>493</td>
</tr>
<tr>
<td>14.2.5</td>
<td>Instability in shear deformations—dislocation slip versus twinning</td>
<td>495</td>
</tr>
<tr>
<td>14.2.6</td>
<td>Strain localization</td>
<td>498</td>
</tr>
<tr>
<td>14.3</td>
<td>Atomistic measure of defect mobility</td>
<td>500</td>
</tr>
<tr>
<td>14.3.1</td>
<td>Single dislocation glide in a metal</td>
<td>500</td>
</tr>
<tr>
<td>14.3.2</td>
<td>Dislocation mobility in silicon: kink mechanism</td>
<td>503</td>
</tr>
<tr>
<td>14.3.3</td>
<td>Crack front extension in metal and semiconductor</td>
<td>506</td>
</tr>
<tr>
<td>14.4</td>
<td>Outlook for multiscale materials</td>
<td>510</td>
</tr>
<tr>
<td>14.5</td>
<td>Acknowledgment</td>
<td>510</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>511</td>
</tr>
</tbody>
</table>

15 From macroscopic to mesoscopic models of chromatin folding
Tamar Schlick

15.1 Introduction 514
15.2 Chromatin structure 515
15.3 The first-generation macroscopic chromatin models and results 518
15.4 The second-generation mesoscopic chromatin model and results 520
15.5 Future perspective 529
 15.5.1 Linker DNA length effects 529
 15.5.2 Histone variant effects 530
 15.5.3 Histone tail modifications 530
 15.5.4 Higher-order chromatin organization 530
15.6 Conclusions 531
15.7 Acknowledgments 531
References 531

16 Multiscale nature inspired chemical engineering
Marc-Olivier Coppens

16.1 Introduction 536
16.2 Resolving multiscale patterns in heterogeneous systems 538
 16.2.1 Bubbling gas-fluidized beds of solid particles 538
 16.2.1.1 A fluidized bed as a chaotic system 539
 16.2.1.2 Polydispersity and the Student t-distribution as emergent pattern 540
 16.2.2 Diffusion in porous media 540
16.3 Imposing multiscale structure using a nature-inspired approach 545
 16.3.1 Hierarchical functional architecture in nature 545
 16.3.2 Nature-inspired fluid distributors and injectors 547
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3.3 Optimal pore networks in catalysis</td>
<td>549</td>
</tr>
<tr>
<td>16.3.4 Nature-inspired membranes</td>
<td>551</td>
</tr>
<tr>
<td>16.4 Concluding remarks</td>
<td>553</td>
</tr>
<tr>
<td>16.5 Acknowledgments</td>
<td>554</td>
</tr>
<tr>
<td>References</td>
<td>554</td>
</tr>
<tr>
<td>Index</td>
<td>561</td>
</tr>
</tbody>
</table>