Stage 1: Define the Research Problem, Objectives, and Multivariate Technique to Be Used 23
Stage 2: Develop the Analysis Plan 23
Stage 3: Evaluate the Assumptions Underlying the Multivariate Technique 23
Stage 4: Estimate the Multivariate Model and Assess Overall Model Fit 23
Stage 5: Interpret the Variate(s) 24
Stage 6: Validate the Multivariate Model 24
A Decision Flowchart 24
Databases 24
 Primary Database 25
 Other Databases 27
Organization of the Remaining Chapters 28
 Section I: Understanding and Preparing For Multivariate Analysis 28
 Section II: Analysis Using Dependence Techniques 28
 Section III: Interdependence Techniques 28
 Section IV: Structural Equations Modeling 28
 Summary 28 • Questions 30 • Suggested Readings 30
 References 30

SECTION I Understanding and Preparing For Multivariate Analysis 31

Chapter 2 Cleaning and Transforming Data 33
 Introduction 36
 Graphical Examination of the Data 37
 Univariate Profiling: Examining the Shape of the Distribution 38
 Bivariate Profiling: Examining the Relationship Between Variables 39
 Bivariate Profiling: Examining Group Differences 40
 Multivariate Profiles 41
 Missing Data 42
 The Impact of Missing Data 42
 A Simple Example of a Missing Data Analysis 43
 A Four-Step Process for Identifying Missing Data and Applying Remedies 44
 An Illustration of Missing Data Diagnosis with the Four-Step Process 54
 Outliers 64
 Detecting and Handling Outliers 65
 An Illustrative Example of Analyzing Outliers 68
 Testing the Assumptions of Multivariate Analysis 70
Chapter 3 Factor Analysis 91
What Is Factor Analysis? 94
A Hypothetical Example of Factor Analysis 95
Factor Analysis Decision Process 96
Stage 1: Objectives of Factor Analysis 96
 Specifying the Unit of Analysis 98
 Achieving Data Summarization Versus Data Reduction 98
 Variable Selection 99
 Using Factor Analysis with Other Multivariate Techniques 100
Stage 2: Designing a Factor Analysis 100
 Correlations Among Variables or Respondents 100
 Variable Selection and Measurement Issues 101
 Sample Size 102
 Summary 102
Stage 3: Assumptions in Factor Analysis 103
 Conceptual Issues 103
 Statistical Issues 103
 Summary 104
Stage 4: Deriving Factors and Assessing Overall Fit 105
 Selecting the Factor Extraction Method 105
 Criteria for the Number of Factors to Extract 108
Stage 5: Interpreting the Factors 112
 The Three Processes of Factor Interpretation 112
 Rotation of Factors 113
 Judging the Significance of Factor Loadings 116
 Interpreting a Factor Matrix 118
Stage 6: Validation of Factor Analysis 122
 Use of a Confirmatory Perspective 122
 Assessing Factor Structure Stability 122
 Detecting Influential Observations 123
Stage 7: Additional Uses of Factor Analysis Results 123
 Selecting Surrogate Variables for Subsequent Analysis 123
 Creating Summated Scales 124
Computing Factor Scores 127
Selecting Among the Three Methods 128

An Illustrative Example 129
Stage 1: Objectives of Factor Analysis 129
Stage 2: Designing a Factor Analysis 129
Stage 3: Assumptions in Factor Analysis 129
Component Factor Analysis: Stages 4 Through 7 132
Common Factor Analysis: Stages 4 and 5 144
A Managerial Overview of the Results 146

SECTION II Analysis Using Dependence Techniques 153

Chapter 4 Simple and Multiple Regression 155

What Is Multiple Regression Analysis? 161
An Example of Simple and Multiple Regression 162
Prediction Using a Single Independent Variable:
Simple Regression 162
Prediction Using Several Independent Variables:
Multiple Regression 165
Summary 167

A Decision Process for Multiple Regression Analysis 167
Stage 1: Objectives of Multiple Regression 169
Research Problems Appropriate for Multiple Regression 169
Specifying a Statistical Relationship 171
Selection of Dependent and Independent Variables 171
Stage 2: Research Design of a Multiple Regression Analysis 173
Sample Size 174
Creating Additional Variables 176
Stage 3: Assumptions in Multiple Regression Analysis 181
Assessing Individual Variables Versus the Variate 182
Methods of Diagnosis 183
Linearity of the Phenomenon 183
Constant Variance of the Error Term 185
Independence of the Error Terms 185
Normality of the Error Term Distribution 185
Summary 186
Stage 4: Estimating the Regression Model and Assessing Overall
Model Fit 186
Selecting an Estimation Technique 186
Testing the Regression Variate for Meeting the Regression
Assumptions 191

Summary 148 • Questions 150 • Suggested Readings 150

References 150
Examining the Statistical Significance of Our Model 192
Identifying Influential Observations 194
Stage 5: Interpreting the Regression Variate 197
Using the Regression Coefficients 197
Assessing Multicollinearity 200
Stage 6: Validation of the Results 206
Additional or Split Samples 206
Calculating the PRESS Statistic 206
Comparing Regression Models 206
Forecasting with the Model 207
Illustration of a Regression Analysis 207
Stage 1: Objectives of Multiple Regression 207
Stage 2: Research Design of a Multiple Regression Analysis 208
Stage 3: Assumptions in Multiple Regression Analysis 208
Stage 4: Estimating the Regression Model and Assessing Overall Model Fit 208
Stage 5: Interpreting the Regression Variate 223
Stage 6: Validating the Results 226
Evaluating Alternative Regression Models 227
A Managerial Overview of the Results 231
Summary 231 • Questions 234 • Suggested Readings 234
References 234

Chapter 5 Canonical Correlation 235
What Is Canonical Correlation? 237
Hypothetical Example of Canonical Correlation 238
Developing a Variate of Dependent Variables 238
Estimating the First Canonical Function 238
Estimating a Second Canonical Function 240
Relationships of Canonical Correlation Analysis to Other Multivariate Techniques 241
Stage 1: Objectives of Canonical Correlation Analysis 242
Selection of Variable Sets 242
Evaluating Research Objectives 242
Stage 2: Designing a Canonical Correlation Analysis 243
Sample Size 243
Variables and Their Conceptual Linkage 243
Missing Data and Outliers 244
Stage 3: Assumptions in Canonical Correlation 244
Linearity 244
Normality 244
Homoscedasticity and Multicollinearity 244
<table>
<thead>
<tr>
<th>Stage 4: Deriving the Canonical Functions and Assessing Overall Fit</th>
<th>245</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deriving Canonical Functions</td>
<td>246</td>
</tr>
<tr>
<td>Which Canonical Functions Should Be Interpreted?</td>
<td>246</td>
</tr>
<tr>
<td>Stage 5: Interpreting the Canonical Variate</td>
<td>250</td>
</tr>
<tr>
<td>Canonical Weights</td>
<td>250</td>
</tr>
<tr>
<td>Canonical Loadings</td>
<td>250</td>
</tr>
<tr>
<td>Canonical Cross-Loadings</td>
<td>250</td>
</tr>
<tr>
<td>Which Interpretation Approach to Use</td>
<td>251</td>
</tr>
<tr>
<td>Stage 6: Validation and Diagnosis</td>
<td>251</td>
</tr>
<tr>
<td>An Illustrative Example</td>
<td>252</td>
</tr>
<tr>
<td>Stage 1: Objectives of Canonical Correlation Analysis</td>
<td>253</td>
</tr>
<tr>
<td>Stages 2 and 3: Designing a Canonical Correlation Analysis and Testing the Assumptions</td>
<td>253</td>
</tr>
<tr>
<td>Stage 4: Deriving the Canonical Functions and Assessing Overall Fit</td>
<td>253</td>
</tr>
<tr>
<td>Stage 5: Interpreting the Canonical Variates</td>
<td>254</td>
</tr>
<tr>
<td>Stage 6: Validation and Diagnosis</td>
<td>257</td>
</tr>
<tr>
<td>A Managerial Overview of the Results</td>
<td>258</td>
</tr>
<tr>
<td>Summary</td>
<td>258</td>
</tr>
<tr>
<td>Questions</td>
<td>259</td>
</tr>
<tr>
<td>References</td>
<td>260</td>
</tr>
</tbody>
</table>

Chapter 6 Conjoint Analysis 261

<table>
<thead>
<tr>
<th>What Is Conjoint Analysis?</th>
<th>266</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypothetical Example of Conjoint Analysis</td>
<td>267</td>
</tr>
<tr>
<td>Specifying Utility, Factors, Levels, and Profiles</td>
<td>267</td>
</tr>
<tr>
<td>Gathering Preferences from Respondents</td>
<td>268</td>
</tr>
<tr>
<td>Estimating Part-Worths</td>
<td>269</td>
</tr>
<tr>
<td>Determining Attribute Importance</td>
<td>270</td>
</tr>
<tr>
<td>Assessing Predictive Accuracy</td>
<td>270</td>
</tr>
<tr>
<td>The Managerial Uses of Conjoint Analysis</td>
<td>271</td>
</tr>
<tr>
<td>Comparing Conjoint Analysis with Other Multivariate Methods</td>
<td>272</td>
</tr>
<tr>
<td>Compositional Versus Decompositional Techniques</td>
<td>272</td>
</tr>
<tr>
<td>Specifying the Conjoint Variate</td>
<td>272</td>
</tr>
<tr>
<td>Separate Models for Each Individual</td>
<td>272</td>
</tr>
<tr>
<td>Flexibility in Types of Relationships</td>
<td>273</td>
</tr>
<tr>
<td>Designing a Conjoint Analysis Experiment</td>
<td>273</td>
</tr>
<tr>
<td>Stage 1: The Objectives of Conjoint Analysis</td>
<td>276</td>
</tr>
<tr>
<td>Defining the Total Utility of the Object</td>
<td>276</td>
</tr>
<tr>
<td>Specifying the Determinant Factors</td>
<td>276</td>
</tr>
<tr>
<td>Stage 2: The Design of a Conjoint Analysis</td>
<td>277</td>
</tr>
<tr>
<td>Selecting a Conjoint Analysis Methodology</td>
<td>278</td>
</tr>
</tbody>
</table>
Designing Profiles: Selecting and Defining Factors and Levels 278
Specifying the Basic Model Form 283
Data Collection 286
Stage 3: Assumptions of Conjoint Analysis 293
Stage 4: Estimating the Conjoint Model and Assessing Overall Fit 294
 Selecting an Estimation Technique 294
 Estimated Part-Worths 297
 Evaluating Model Goodness-of-Fit 298
Stage 5: Interpreting the Results 299
 Examining the Estimated Part-Worths 300
 Assessing the Relative Importance of Attributes 302
Stage 6: Validation of the Conjoint Results 303
Managerial Applications of Conjoint Analysis 303
 Segmentation 304
 Profitability Analysis 304
 Conjoint Simulators 305
Alternative Conjoint Methodologies 306
 Adaptive/Self-Explicated Conjoint: Conjoint with a Large Number of Factors 306
 Choice-Based Conjoint: Adding Another Touch of Realism 308
 Overview of the Three Conjoint Methodologies 312
An Illustration of Conjoint Analysis 312
 Stage 1: Objectives of the Conjoint Analysis 313
 Stage 2: Design of the Conjoint Analysis 313
 Stage 3: Assumptions in Conjoint Analysis 316
 Stage 4: Estimating the Conjoint Model and Assessing Overall Model Fit 316
 Stage 5: Interpreting the Results 320
 Stage 6: Validation of the Results 324
A Managerial Application: Use of a Choice Simulator 325
Summary 327 • Questions 330 • Suggested Readings 330
References 330

Chapter 7 Multiple Discriminant Analysis and Logistic Regression 335
What Are Discriminant Analysis and Logistic Regression? 339
 Discriminant Analysis 340
 Logistic Regression 341
Analogy with Regression and MANOVA 341
Hypothetical Example of Discriminant Analysis 342
 A Two-Group Discriminant Analysis: Purchasers Versus Nonpurchasers 342
Stage 4: Estimation of the Discriminant Model and Assessing Overall Fit 392
Stage 5: Interpretation of Three-Group Discriminant Analysis Results 404
Stage 6: Validation of the Discriminant Results 410
A Managerial Overview 412
Logistic Regression: Regression with a Binary Dependent Variable 413
Representation of the Binary Dependent Variable 414
Sample Size 415
Estimating the Logistic Regression Model 416
Assessing the Goodness-of-Fit of the Estimation Model 419
Testing for Significance of the Coefficients 421
Interpreting the Coefficients 422
Calculating Probabilities for a Specific Value of the Independent Variable 425
Overview of Interpreting Coefficients 425
Summary 425
An Illustrative Example of Logistic Regression 426
Stages 1, 2, and 3: Research Objectives, Research Design, and Statistical Assumptions 426
Stage 4: Estimation of the Logistic Regression Model and Assessing Overall Fit 426
Stage 5: Interpretation of the Results 432
Stage 6: Validation of the Results 433
A Managerial Overview 434
Summary 434 • Questions 437 • Suggested Readings 437
References 437

Chapter 8 ANOVA and MANOVA 439
MANOVA: Extending Univariate Methods for Assessing Group Differences 443
Multivariate Procedures for Assessing Group Differences 444
A Hypothetical Illustration of MANOVA 447
Analysis Design 447
Differences from Discriminant Analysis 448
Forming the Variate and Assessing Differences 448
A Decision Process for MANOVA 449
Stage 1: Objectives of MANOVA 450
When Should We Use MANOVA? 450
Types of Multivariate Questions Suitable for MANOVA 451
Selecting the Dependent Measures 452
Stage 2: Issues in the Research Design of MANOVA 453
 Sample Size Requirements—Overall and by Group 453
 Factorial Designs—Two or More Treatments 453
 Using Covariates—ANCOVA and MANCOVA 455
 MANOVA Counterparts of Other ANOVA Designs 457
 A Special Case of MANOVA: Repeated Measures 457
Stage 3: Assumptions of ANOVA and MANOVA 458
 Independence 458
 Equality of Variance–Covariance Matrices 459
 Normality 460
 Linearity and Multicollinearity Among the Dependent Variables 460
 Sensitivity to Outliers 460
Stage 4: Estimation of the MANOVA Model and Assessing Overall Fit 460
 Estimation with the General Linear Model 462
 Criteria for Significance Testing 463
 Statistical Power of the Multivariate Tests 463
Stage 5: Interpretation of the MANOVA Results 468
 Evaluating Covariates 468
 Assessing Effects on the Dependent Variate 468
 Identifying Differences Between Individual Groups 472
 Assessing Significance for Individual Dependent Variables 474
Stage 6: Validation of the Results 475
Summary 476
Illustration of a MANOVA Analysis 476
Example 1: Difference Between Two Independent Groups 477
 Stage 1: Objectives of the Analysis 478
 Stage 2: Research Design of the MANOVA 478
 Stage 3: Assumptions in MANOVA 479
 Stage 4: Estimation of the MANOVA Model and Assessing the Overall Fit 480
 Stage 5: Interpretation of the Results 482
Example 2: Difference Between K Independent Groups 482
 Stage 1: Objectives of the MANOVA 483
 Stage 2: Research Design of MANOVA 483
 Stage 3: Assumptions in MANOVA 484
 Stage 4: Estimation of the MANOVA Model and Assessing Overall Fit 485
 Stage 5: Interpretation of the Results 485
Example 3: A Factorial Design for MANOVA with Two Independent Variables 488
Section III Analysis Using Interdependence Techniques 503

Chapter 9 Grouping Data with Cluster Analysis 505
What Is Cluster Analysis? 508
 Cluster Analysis as a Multivariate Technique 508
 Conceptual Development with Cluster Analysis 508
 Necessity of Conceptual Support in Cluster Analysis 509
How Does Cluster Analysis Work? 510
 A Simple Example 510
 Objective Versus Subjective Considerations 515
Cluster Analysis Decision Process 515
 Stage 1: Objectives of Cluster Analysis 517
 Stage 2: Research Design in Cluster Analysis 518
 Stage 3: Assumptions in Cluster Analysis 526
 Stage 4: Deriving Clusters and Assessing Overall Fit 527
 Stage 5: Interpretation of the Clusters 538
 Stage 6: Validation and Profiling of the Clusters 539
An Illustrative Example 541
 Stage 1: Objectives of the Cluster Analysis 541
 Stage 2: Research Design of the Cluster Analysis 542
 Stage 3: Assumptions in Cluster Analysis 545
 Employing Hierarchical and Nonhierarchical Methods 546
 Step 1: Hierarchical Cluster Analysis (Stage 4) 546
 Step 2: Nonhierarchical Cluster Analysis (Stages 4, 5, and 6) 552
 Summary 561 • Questions 563 • Suggested Readings 563
 References 563

Chapter 10 MDS and Correspondence Analysis 565
What Is Multidimensional Scaling? 568
 Comparing Objects 568
 Dimensions: The Basis for Comparison 569
A Simplified Look at How MDS Works 570
 Gathering Similarity Judgments 570
 Creating a Perceptual Map 570
 Interpreting the Axes 571
Comparing MDS to Other Interdependence Techniques 572
 Individual as the Unit of Analysis 573
 Lack of a Variate 573
A Decision Framework for Perceptual Mapping 573
Stage 1: Objectives of MDS 573
 Key Decisions in Setting Objectives 573
Stage 2: Research Design of MDS 578
 Selection of Either a Decompositional (Attribute-Free) or Compositional (Attribute-Based) Approach 578
 Objects: Their Number and Selection 580
 Nonmetric Versus Metric Methods 581
 Collection of Similarity or Preference Data 581
Stage 3: Assumptions of MDS Analysis 584
Stage 4: Deriving the MDS Solution and Assessing Overall Fit 584
 Determining an Object's Position in the Perceptual Map 584
 Selecting the Dimensionality of the Perceptual Map 586
 Incorporating Preferences into MDS 587
Stage 5: Interpreting the MDS Results 592
 Identifying the Dimensions 593
Stage 6: Validating the MDS Results 594
 Issues in Validation 594
 Approaches to Validation 594
Overview of Multidimensional Scaling 595
Correspondence Analysis 595
 Distinguishing Characteristics 595
 Differences from Other Multivariate Techniques 596
 A Simple Example of CA 596
 A Decision Framework for Correspondence Analysis 600
Stage 1: Objectives of CA 601
Stage 2: Research Design of CA 601
Stage 3: Assumptions in CA 602
Stage 4: Deriving CA Results and Assessing Overall Fit 602
Stage 5: Interpretation of the Results 603
Stage 6: Validation of the Results 604
Overview of Validation of Correspondence Analysis 604
Illustrations of MDS and Correspondence Analysis 605
Stage 1: Objectives of Perceptual Mapping 606
 Identifying Objects for Inclusion 606
 Basing the Analysis on Similarity or Preference Data 607
 Using a Disaggregate or Aggregate Analysis 607
Stage 2: Research Design of the Perceptual Mapping Study 607
 Selecting Decompositional or Compositional Methods 607
 Selecting Firms for Analysis 608
 Nonmetric Versus Metric Methods 608
 Collecting Data for MDS 608
 Collecting Data for Correspondence Analysis 609
Stage 3: Assumptions in Perceptual Mapping 610
 Multidimensional Scaling: Stages 4 and 5 610
 Stage 4: Deriving MDS Results and Assessing Overall Fit 610
 Stage 5: Interpretation of the Results 615
 Overview of the Decompositional Results 616
 Correspondence Analysis: Stages 4 and 5 617
 Stage 4: Estimating a Correspondence Analysis 617
 Stage 5: Interpreting CA Results 619
 Overview of CA 621
Stage 6: Validation of the Results 622
 A Managerial Overview of MDS Results 622
 Summary 623 • Questions 625 • Suggested Readings 625
 References 625

SECTION IV Structural Equations Modeling 627
Chapter 11 SEM: An Introduction 629
 What Is Structural Equation Modeling? 634
 Estimation of Multiple Interrelated Dependence Relationships 635
 Incorporating Latent Variables Not Measured Directly 635
 Defining a Model 637
 SEM and Other Multivariate Techniques 641
 Similarity to Dependence Techniques 641
 Similarity to Interdependence Techniques 641
 The Emergence of SEM 642
 The Role of Theory in Structural Equation Modeling 642
 Specifying Relationships 642
 Establishing Causation 643
 Developing a Modeling Strategy 646
 A Simple Example of SEM 647
 The Research Question 647
Setting Up the Structural Equation Model for Path Analysis 648
The Basics of SEM Estimation and Assessment 649
Six Stages in Structural Equation Modeling 653
Stage 1: Defining Individual Constructs 655
 Operationalizing the Construct 655
 Pretesting 655
Stage 2: Developing and Specifying the Measurement Model 656
 SEM Notation 656
 Creating the Measurement Model 657
Stage 3: Designing a Study to Produce Empirical Results 657
 Issues in Research Design 658
 Issues in Model Estimation 662
Stage 4: Assessing Measurement Model Validity 664
 The Basics of Goodness-of-Fit 665
 Absolute Fit Indices 666
 Incremental Fit Indices 668
 Parsimony Fit Indices 669
 Problems Associated with Using Fit Indices 669
 Unacceptable Model Specification to Achieve Fit 671
 Guidelines for Establishing Acceptable and Unacceptable Fit 672
Stage 5: Specifying the Structural Model 673
Stage 6: Assessing the Structural Model Validity 675
 Structural Model GOF 675
 Competitive Fit 676
 Comparison to the Measurement Model 676
Testing Structural Relationships 677
 Summary 678 • Questions 680 • Suggested Readings 680
Appendix 11A: Estimating Relationships Using Path Analysis 681
Appendix 11B: SEM Abbreviations 683
Appendix 11C: Detail on Selected GOF Indices 684
References 685

Chapter 12 Applications of SEM 687
Part 1: Confirmatory Factor Analysis 693
 CFA and Exploratory Factor Analysis 693
 A Simple Example of CFA and SEM 694
 A Visual Diagram 694
SEM Stages for Testing Measurement Theory Validation
 with CFA 695
Stage 1: Defining Individual Constructs 696