CONTENTS

PREFACE

ACKNOWLEDGEMENTS

BIOGRAPHIES

SECTION ONE

Section 1 – CSP Market and Infrastructure

CHAPTER ONE

Introduction to Chip Scale Packaging

1.1 Introduction
1.2 Background
1.3 The Emergence of Chip Scale Packaging
1.4 Chip Scale Packaging Types
1.5 Bare Chip Technologies
1.6 Summary

CHAPTER TWO

CSP Markets and Applications

2.1 CSP Structures — Categorised by Package Structure
2.2 CSP Applications
2.2.1 Digital Camcorders — The First CSPs
2.2.2 Card PCs — Feature Ceramic Packages
2.2.3 Lead Frame-based Packages — From Phones to Computers
2.2.4 Mobile Phones Drive CSP Volumes
2.3 CSP Applications Expand beyond Portable Products
2.4 CSPs for Games
2.5 CSPs: The Future
CHAPTER THREE

Design Guidelines for PCBs for use with CSPs

3.1 Introduction 18
3.2 BGA and CSP Standards 19
3.3 Area Array Package Planning 19
3.3.1 Contact Layout and Device Outlines 20
3.3.2 Chip-scale Area Array Variations 21
3.3.3 Fine-pitch BGA Contact Array Planning 21
3.3.3.1 Packaging Technology Considerations 22
3.4 PCB Design Guidelines for BGA 23
3.4.1 Contact Matrix Options 23
3.4.1.1 Full Matrix 23
3.4.1.2 Perimeter Matrix 23
3.4.1.3 Thermally Enhanced Matrix 24
3.4.1.4 Staggered Matrix 24
3.4.1.5 Selective Depopulation 24
3.4.2 Defining Contact Assignment 24
3.4.3 Attachment Site Planning 25
3.4.4 Circuit Routing for Array Devices 26
3.4.5 Circuit Density Considerations 26
3.4.6 Fine Line/Circuit Layer Trade-off 27
3.4.7 Rigid PCB Material Selection 27
3.4.7.1 PCB Material Attributes 27
3.4.8 Via Hole Planning 29
3.4.8.1 Fine-pitch BGA Land Pattern/Via Hole Planning 30
3.4.9 Providing for Higher Circuit Density 30
3.5 Microvia Technology 30
3.5.1 Design Guidelines for Microvia 31
3.5.2 Laser-drilled Microvia Process 31
3.5.3 Design Guidelines for Laser-via PCB Structures 32
3.5.4 Photo-defined Microvia Process 32
3.5.5 Plasma-drilled Microvia Process 33
3.5.6 Microvia Technology Availability 34
3.5.7 Economics for Microvia 35
3.5.7.1 Mechanical Drilling 35
3.5.7.2 Photo-defined Sequential Build-up 35
3.5.7.3 Laser Drilled Microvia Technology 35
3.6 Specifying Surface Finish for CSP Circuit Structures 35
3.6.1 Tin/Lead Coating 36
3.6.2 Ni/Au Finishes 36
3.6.2.1 Electro Plating Process 37
3.6.2.2 Ni/Au Electroless or Immersion Plating 37
3.6.3 Pd/Ni or Pd/Cu Electroless (Palladium) Plating 37
3.6.4 Alternative Surface Finish for Device Attachment 37
3.6.4.1 Organic Solderability Preservative (OSP) 37
3.7 PCB Assembly Process Considerations 38
3.7.1 BGA Assembly Process Development 38
3.7.2 Solder Paste Printing 38
3.7.2.1 Solder Stencil Requirements for Area Array Devices 39
5.5 Design Guideline Development 62
5.5.1 Package Height Standards 62
5.5.2 Package Parallelism 62
5.5.3 Ball Positional Tolerance 63
5.5.4 Ball Diameter Specification 64
5.5.5 Package Outline 65
5.6 Standards for Rectangular FBGAs 65
5.7 International Status for Standards 67
5.7.1 International CSP Standards Development 68
5.7.2 Primary Package Variations 68
5.7.3 CSP Industry Trends 70
5.8 Conclusion 71
5.9 Acknowledgements 72

CHAPTER SIX

Encapsulation Materials for CSPs

6.1 Introduction 73
6.2 The Rôle of Encapsulation 73
6.3 The Evolution of IC Packaging and Encapsulants 74
6.4 Encapsulant Materials 75
6.4.1 Encapsulant Resins 75
6.4.1.1 Epoxy 75
6.4.1.2 Silicone 77
6.4.1.3 Polyimides 77
6.4.2 Fillers for Encapsulants 77
6.4.3 Lead Stress Management 78
6.5 Controlling Encapsulant-Related Failure Mechanisms for CSPs 79
6.5.1 Effect of Thermal Expansion Mismatch 80
6.5.2 Effect of Die Size 80
6.5.3 Countering the Effects of CTE Mismatch 81
6.6 Future Developments in Chip Scale Encapsulants 82
6.7 Summary 82

Section 2 – Chip Scale Packages

CHAPTER SEVEN

Flip-Chip Technology

7.1 Introduction 83
7.1.1 Basics 83
7.1.1.1 The Package 83
7.1.2 History 84
7.2 Under Bump Metallisation (UBM) 86
7.2.1 Problems with Aluminium 87
7.2.2 Types of UBM 87
7.2.3 The IC Transition to Copper 89
7.3 Bumping Materials 90
7.3.1 Fusible Bumps 90
Contents

7.3.1.1 High-lead Solder 90
7.3.1.2 Stratified Bumps 91
7.3.1.3 Eutectic Sn/Pb 91
7.3.1.4 Polymer Bumps, Thermoplastic 91
7.3.2 Non-Fusible Bumps 92
7.3.2.1 Gold 92
7.3.2.2 Nickel 93
7.3.2.3 Polymer, Thermoset 93
7.4 Bumping Processes 94
7.4.1 Vacuum Deposition 94
7.4.2 Plating 95
7.4.2.1 Electrolytic Plating 95
7.4.2.2 Electroless Plating 95
7.4.3 Printing/Stencilling 96
7.4.4 Metal Fluid Jetting 97
7.4.5 Mechanical 97
7.5 Joining Materials and Agents 98
7.5.1 Flux 98
7.5.2 Solder Paste 99
7.5.3 Conductive Adhesives 99
7.5.3.1 Anisotropic Conductive Adhesives (ACAs) 100
7.5.3.2 Isotropic Conductive Adhesives (ICAs) 101
7.5.3.3 Adhesives, Non-conductive 102
7.6 The Assembly Process 102
7.6.1 Solder Reflow 102
7.6.1.1 SMT Process with Eutectic Bumps 103
7.6.1.2 Pre-applied Flux-underfill Assembly 104
7.6.1.3 Solder Paste Processes 104
7.6.2 Thermomechanical Attachment 105
7.6.3 Adhesive Bonding 105
7.6.3.1 Isotropic Conductive Adhesive Assembly 105
7.6.3.2 Anisotropic Conductive Adhesive Assembly 106
7.6.3.3 Non-conductive Adhesive Assembly 106
7.6.4 Testing and Rework 106
7.6.4.1 Pre-testing 106
7.6.4.2 In-circuit Testing 107
7.7 Encapsulation/Underfill 107
7.7.1 Pre-Applied Flux/Underfills 108
7.7.1.1 Liquid on Substrate 108
7.7.1.2 Solid on Substrate 109
7.7.1.3 Solid on Chip/Wafer 109
7.7.2 Post-Applied Materials 110
7.7.2.1 Capillary Underfill 110
7.7.2.2 Encapsulant (Over Chip) 111
7.8 Substrates for Flip Chips 111
7.8.1 Ceramic 112
7.8.2 Organic, Rigid 112
7.8.3 Organic, Flexible, High Temperature 113
7.8.4 Organic, Flexible, Temperature-limited 113
7.9 Features and Benefits 114
7.9.1 Geometrical Considerations 114
7.9.1.1 Footprint 114
7.9.1.2 Profile 114
7.9.1.3 Weight 115
7.9.2 Performance 115
7.9.2.1 Speed 115
7.9.2.2 I/O Density 115
7.9.2.3 Process-related Economics 115
7.10 Limitations and Issues 116
7.10.1 Known Good Die Challenge 116
7.10.2 High Density Circuit Requirements 116
7.10.3 Assembly Difficulty 117
7.10.4 Ramifications of Die Shrink 117
7.11 Performance and Reliability 117
7.12 Applications 118
7.12.1 Computers and Peripherals 118
7.12.2 Automotive 119
7.12.3 Consumer Products 119
7.12.4 Communications 120
7.12.5 Smart Cards/RFIDs 120
7.12.6 Other FC Products 121
7.13 Summary and Conclusions 121

CHAPTER EIGHT

Flip-Chip Ceramic Based CSP

8.1 Features of Flip-Chip Ceramic-Based CSP 125
8.2 Advantages 125
8.3 Disadvantages 126
8.4 Structure of Ceramic Flip-Chip CSP 126
8.5 Process for Manufacturing a Ceramic CSP 128
8.6 Stud Bumping 129
8.7 Conductive Paste Application 130
8.8 Underfill Application 131
8.9 Dimensional Stability 132
8.10 Interposer Manufacturing Process 133
8.11 Characteristics of Ceramic Interposers 134
8.12 Wiring Rules 134
8.13 Conductive Adhesive 135
8.14 Underfill Characteristics 135
8.15 Underfill Formulation 136
8.16 Electrical Properties of Ceramic CSPs 137
8.17 Lead Inductance 137
8.18 Switching Noise Characteristics 138
8.19 High Frequency Characteristics 138
8.20 Thermal Resistance 139
8.21 Reliability of Ceramic CSP 139
8.22 Package Level Reliability 140
8.23 Second Level Assembly and Reliability of LGA Solder Joint 142
8.23.1 Dummy Solder Joints 143
8.24 CSP Interposer Design 144
8.25 Simultaneous Design Approach 144
8.26 Products and Applications 145
8.27 Summary 146

CHAPTER NINE

Flip-chip CSP Technology Development and Implementation

9.1 Introduction 148
9.1.1 Background 148
9.2 Early Development 151
9.3 Flip-chip CSP Subclasses 151
9.4 Electrical Performance of FC-CSP 153
9.5 Flip-chip Technology Variants 154
9.6 Description 154
9.7 JACS-Pak™ Flip-Chip CSP Development and Construction 156
9.7.1 Substrates 156
9.7.2 Metal Finish 159
9.7.3 Bump Redistribution 160
9.7.4 Assembly Process 161
9.7.4.1 Fluxing 161
9.7.4.2 Underfilling 162
9.7.4.3 Solder Ball Attach 162
9.7.4.4 Package Singulation 162
9.8 Overmoulded FC-CSP 162
9.9 Factors Affecting the Reliability of a Flip-chip CSP 164
9.9.1 Underfill Fillet Geometry 164
9.9.2 Underfill Material Properties 164
9.9.3 Die Edge Chipping 165
9.9.4 Chip to Substrate Gap Height 165
9.10 Design for Reliability 165
9.11 Reliability Performance of Flip-Chip CSPs 166
9.12 Board Level Reliability 169
9.13 Flip-chip CSP Applications 172
9.13.1 Sony's Bold Implementation of Flip-chip CSP Packaging 172
9.13.2 JACS-Pak Product Implementations at Motorola 174
9.13.3 Stud Bump Bonding Based FC-CSPs in Product Applications 174
9.13.4 Broadening of FC-CSP Technology Options 177

CHAPTER TEN

Bottom Leaded Plastic (BLP) Package and Its Solder Joint Reliability

10.1 Introduction 179
10.2 BLP Package Design 180
10.2.1 DRAM Package Trend 180
10.2.2 BLP Structure 182
10.2.3 Lead Frame Design 183
10.3 Standard 184
10.4 Process and Materials 185
10.4.1 Die Attach 185
10.4.2 Wire Bond 187
10.4.3 Encapsulation 187
10.4.4 Deflash 188
10.4.5 Solder Plate 189
10.4.6 Trim 189
10.5 Test and Burn-in 190
10.6 Package Reliability 190
10.7 Solder Joint Reliability 191
10.7.1 Design Strategy 192
10.7.2 ATC Test 192
10.7.3 First Design: BLP-I 194
10.7.4 New BLP Design: BLP-II 195
10.7.5 FEM Model 198
10.7.6 Reliability Prediction Model 199
10.7.7 Package Material Optimisation 203
10.7.8 Discussion 204
10.8 Package Performance 204
10.8.1 Thermal Performance 205
10.8.2 Electrical Performance 206
10.9 Application 207
10.10 Summary 208
10.11 Acknowledgements 209

CHAPTER ELEVEN

Quad Flat Non-leaded CSP

11.1 Introduction 212
11.2 QFN Structure 213
11.3 Assembly Flow 216
11.4 Technology Development 217
11.5 Package Characteristics 218
11.6 Package Reliability 218
11.7 Application and Development 220

CHAPTER TWELVE

Bumped and Leadless Small Outline Packages

12.1 Introduction 221
12.2 MicroLeadframe™ (MLF) Package 222
12.2.1 Package Structure 223
12.2.2 Applications 224
12.3 Bump Chip Carrier (BCC) Package 224
12.3.1 Package Structure 224
12.4 Small Outline Electroformed Rivet Contact Package (COBIC) 225
12.4.1 COBIC Structure 226
12.4.2 Moulding Compound Selection 227
12.4.3 Manufacturing and Assembly Processes 227
12.4.4 Alternative Structures 230
12.4.4.1 Thermal Enhancement 230
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.4.4.2 Stacked Chip Constructions</td>
<td>231</td>
</tr>
<tr>
<td>12.4.4.3 Optical Packaging Constructions</td>
<td>231</td>
</tr>
<tr>
<td>12.5 Package Reliability</td>
<td>231</td>
</tr>
<tr>
<td>12.6 Electrical and Thermal Performance</td>
<td>232</td>
</tr>
<tr>
<td>12.7 Summary</td>
<td>233</td>
</tr>
<tr>
<td>CHAPTER THIRTEEN</td>
<td></td>
</tr>
<tr>
<td>Flex Circuit Based Wire Bonded CSP</td>
<td></td>
</tr>
<tr>
<td>13.1 Introduction and Background</td>
<td>234</td>
</tr>
<tr>
<td>13.2 Package Configuration</td>
<td>234</td>
</tr>
<tr>
<td>13.2.1 Substrate (Flexible Interposer)</td>
<td>235</td>
</tr>
<tr>
<td>13.2.2 Low Temperature Wire Bonding Processing</td>
<td>236</td>
</tr>
<tr>
<td>13.2.3 Adhesion to Other Materials</td>
<td>237</td>
</tr>
<tr>
<td>13.3 Trace Design</td>
<td>237</td>
</tr>
<tr>
<td>13.4 Assembly Process</td>
<td>238</td>
</tr>
<tr>
<td>13.4.1 Substrate Handling</td>
<td>239</td>
</tr>
<tr>
<td>13.4.2 Die Attach</td>
<td>239</td>
</tr>
<tr>
<td>13.4.3 Wire Bond</td>
<td>241</td>
</tr>
<tr>
<td>13.4.4 Encapsulation</td>
<td>241</td>
</tr>
<tr>
<td>13.4.5 Solder Sphere Attach</td>
<td>242</td>
</tr>
<tr>
<td>13.4.6 Singulation</td>
<td>245</td>
</tr>
<tr>
<td>13.5 Package Characteristics</td>
<td>245</td>
</tr>
<tr>
<td>13.5.1 Electrical Performance</td>
<td>245</td>
</tr>
<tr>
<td>13.5.2 Thermal Performance</td>
<td>246</td>
</tr>
<tr>
<td>13.6 Reliability</td>
<td>248</td>
</tr>
<tr>
<td>13.6.1 Reflow Performance</td>
<td>248</td>
</tr>
<tr>
<td>13.6.2 Component Level Reliability</td>
<td>249</td>
</tr>
<tr>
<td>13.6.3 Board Level Reliability of Assembled MicroStar BGA CSP</td>
<td>250</td>
</tr>
<tr>
<td>13.7 Summary</td>
<td>252</td>
</tr>
<tr>
<td>CHAPTER FOURTEEN</td>
<td></td>
</tr>
<tr>
<td>Compliant, Flexible Base Material Packages</td>
<td></td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>254</td>
</tr>
<tr>
<td>14.1.1 Background</td>
<td>255</td>
</tr>
<tr>
<td>14.1.2 Package Objectives</td>
<td>255</td>
</tr>
<tr>
<td>14.1.3 I/O Placement Issues</td>
<td>256</td>
</tr>
<tr>
<td>14.2 Compliant CSP Constructions</td>
<td>257</td>
</tr>
<tr>
<td>14.2.1 Fundamental Elements of Construction</td>
<td>257</td>
</tr>
<tr>
<td>14.2.1.1 Flexible Base Film Layer</td>
<td>257</td>
</tr>
<tr>
<td>14.2.1.2 Metal Circuit Redistribution Layer</td>
<td>258</td>
</tr>
<tr>
<td>14.2.1.3 Buffer or Compliant Layer</td>
<td>258</td>
</tr>
<tr>
<td>14.2.1.4 Flexible Link</td>
<td>258</td>
</tr>
<tr>
<td>14.2.1.5 Next Level Connection Contacts</td>
<td>259</td>
</tr>
<tr>
<td>14.2.1.5.2 Electroformed Bumps</td>
<td>260</td>
</tr>
<tr>
<td>14.2.1.5.3 Solder Balls</td>
<td>260</td>
</tr>
<tr>
<td>14.2.1.5.4 Solid Core Balls</td>
<td>261</td>
</tr>
<tr>
<td>14.2.1.6 Principles of Operation</td>
<td>261</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>14.2.2 Early Wire Bonded Variations</td>
<td>261</td>
</tr>
<tr>
<td>14.2.2.1 Die Face-up</td>
<td>262</td>
</tr>
<tr>
<td>14.2.2.1.1 Flat Flexible Film</td>
<td>262</td>
</tr>
<tr>
<td>14.2.2.1.2 Wrap-around</td>
<td>262</td>
</tr>
<tr>
<td>14.2.2.2 Die Face-down</td>
<td>263</td>
</tr>
<tr>
<td>14.2.3 Integral Lead Frame</td>
<td>263</td>
</tr>
<tr>
<td>14.2.3.1 I/O Placement Decision</td>
<td>263</td>
</tr>
<tr>
<td>14.2.3.1.1 Fan-in Only</td>
<td>263</td>
</tr>
<tr>
<td>14.2.3.1.2 Centre Bond Pad</td>
<td>263</td>
</tr>
<tr>
<td>14.2.3.1.3 Fan-in/Fan-out</td>
<td>264</td>
</tr>
<tr>
<td>14.2.3.1.4 Fan-out</td>
<td>265</td>
</tr>
<tr>
<td>14.2.3.1.5 Multiple Metal Layers</td>
<td>265</td>
</tr>
<tr>
<td>14.2.3.1.6 Folded, Multichip Structures</td>
<td>265</td>
</tr>
<tr>
<td>14.2.3.1.7 Variations</td>
<td>266</td>
</tr>
<tr>
<td>14.2.4 Addressing Die Shrink</td>
<td>267</td>
</tr>
<tr>
<td>14.2.4.1 Epoxy Ring</td>
<td>268</td>
</tr>
<tr>
<td>14.2.4.2 Elastomer Ring</td>
<td>268</td>
</tr>
<tr>
<td>14.2.4.3 Metal Ring</td>
<td>268</td>
</tr>
<tr>
<td>14.3 Manufacturing Processes</td>
<td>268</td>
</tr>
<tr>
<td>14.3.1 Original Process</td>
<td>269</td>
</tr>
<tr>
<td>14.3.2 The Zinger™ Assembly Process</td>
<td>270</td>
</tr>
<tr>
<td>14.3.2.1 Zinger 1.4 Process</td>
<td>271</td>
</tr>
<tr>
<td>14.3.2.2 Zinger 3.0 Process</td>
<td>272</td>
</tr>
<tr>
<td>14.3.2.3 Zinger 4.0 Process</td>
<td>273</td>
</tr>
<tr>
<td>14.3.3 WAVE™ Process</td>
<td>274</td>
</tr>
<tr>
<td>14.4 Electrical Performance</td>
<td>275</td>
</tr>
<tr>
<td>14.4.1 Signal Trace Analysis Decisions</td>
<td>276</td>
</tr>
<tr>
<td>14.4.2 Estimating Values for RCL Parasitics</td>
<td>277</td>
</tr>
<tr>
<td>14.4.2.1 Estimated Resistance Calculation</td>
<td>277</td>
</tr>
<tr>
<td>14.4.2.2 Estimated Self-capacitance Calculation</td>
<td>278</td>
</tr>
<tr>
<td>14.4.2.3 Estimated Self-inductance Calculation</td>
<td>279</td>
</tr>
<tr>
<td>14.4.2.4 Results</td>
<td>280</td>
</tr>
<tr>
<td>14.4.3 Factors that Reduce Estimation Accuracy</td>
<td>280</td>
</tr>
<tr>
<td>14.4.4 Software Modelled RCL Parasitics</td>
<td>281</td>
</tr>
<tr>
<td>14.4.5 Crosstalk Issues</td>
<td>285</td>
</tr>
<tr>
<td>14.4.5.1 Classic Crosstalk Equations</td>
<td>285</td>
</tr>
<tr>
<td>14.4.5.2 Calculating Crosstalk with Software</td>
<td>287</td>
</tr>
<tr>
<td>14.4.5.3 Crosstalk Reduction Methods</td>
<td>289</td>
</tr>
<tr>
<td>14.5 Thermal Performance</td>
<td>290</td>
</tr>
<tr>
<td>14.6 Reliability and Failure Analysis</td>
<td>291</td>
</tr>
<tr>
<td>14.6.1 Moisture Sensitivity</td>
<td>291</td>
</tr>
<tr>
<td>14.6.2 Reliability Testing Conditions</td>
<td>292</td>
</tr>
<tr>
<td>14.6.3 Reliability Test Results</td>
<td>293</td>
</tr>
<tr>
<td>14.6.4 Failure Mechanisms</td>
<td>294</td>
</tr>
<tr>
<td>14.7 Summary</td>
<td>296</td>
</tr>
</tbody>
</table>

CHAPTER FIFTEEN

3-D Chip Scale Package (CSP)

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.1 Increased Density Approaches</td>
<td>297</td>
</tr>
<tr>
<td>15.2 Review of 3-D Stacking</td>
<td>298</td>
</tr>
</tbody>
</table>
Contents

15.2.1 Bare Die 298
15.2.2 MCM 299
15.2.3 CSP 299
15.3 3-D MCM for Aerospace Applications 300
15.4 STAKPAK™ 303
15.5 Samsung 3-D Memory 305
15.6 Fujitsu 307
15.7 Stack Chip Package (SCP) by Hyundai 309
15.7.1 SCP Design 309
15.7.2 Assembly 311
15.7.3 Fluxless Soldering Joints of Ag/Sn 312
15.7.4 High-pressure Mechanical Joining of Silver 312
15.7.5 Mechanical Strength of Lead-to-lead Joint 313
15.7.6 Reliability 314
15.7.7 Popcorn Cracking Test 314
15.7.8 Temperature Cycle Test and Pressure Cooker Test 315
15.8 D2CSP Stack by LG Semicon 316
15.8.1 Design and Manufacturing Process 316
15.8.2 Package and Assembly Reliability 319
15.8.3 Rework 322
15.8.4 Applications 322
15.9 NEC's Three Dimensional Memory Module (3-DM) 323
15.10 Area Array Stack Memory by Micron 324
15.11 Fujitsu Stacked MCP (Multi-Chip Package) 325

CHAPTER SIXTEEN

Wafer-level Packaging

16.1 Introduction 329
16.2 Background 329
16.3 Applications and Requirements for Chip Size Packages 330
16.3.1 Perimeter Pad Limitations 332
16.3.2 Chip-level Area Array I/O Pitch 332
16.4 Comparison of Wafer-level CSP to Bumped Wafers (C4) 332
16.5 Wafer-Level Packaging Drivers 333
16.5.1 Cost Reduction or Savings 333
16.5.2 Cost-efficiency Improvement 334
16.5.3 Cost of Test Reduction 335
16.5.4 Known Good Die (KGD) Solution 335
16.5.5 Standardisation of I/O Pin-out 336
16.5.6 Compliant Interconnection Capability 336
16.6 Wafer-Level Packaging Technology Overview 336
16.6.1 Wafer-level Packaging Issues 337
16.6.2 Process Complexity and Yield 337
16.6.3 Die Maturity 340
16.6.4 Die Shrink Concerns in Wafer-level Packaging 341
16.6.5 Mechanical Compliance Concerns 342
16.6.6 Alpha Particle Emissions 342
16.6.7 Enhanced Packaging Capability 343
16.6.8 Factors in Cost Analysis 343
Section 3 – CSP Reliability

CHAPTER SEVENTEEN

Reliability Verification of CSPs

17.1 Introduction 361
17.2 Definitions 362
17.2.1 Reliability Definition 362
17.2.2 Qualification Testing Definition 362
17.2.3 Environmental Stress Screening 363
17.2.4 Testing Philosophy 363
17.3 Traditional Practice for Reliability Verification 364
17.4 Test Strategy for the Future 365
17.4.1 Reliability Program Standard Development 366
17.4.2 IPC Reliability Promotion Efforts 366
17.4.3 JEDEC Reliability Promotion Efforts 367
17.4.4 Summary of Reliability Approaches 367
17.5 Performance-based Reliability Testing of Packages 367
17.5.1 Design for Reliability 367
17.5.2 Test Programme Development 368
17.5.3 Summary of Performance-based Testing Concerns 368
17.6 Possible Failure Mechanisms 369
17.6.1 Cracking of Solder Joints 369
17.6.1.1 Failure Mechanisms 369
17.6.1.2 Strain Related Failure 370
17.6.1.3 Vibration Wear-out Failure 370
17.6.1.4 Influence of Package and Solder Land Design on Failure 370
17.6.1.5 Influence of Underfill on Solder Joint Reliability 371
17.6.1.6 Accelerated Test Methods for Evaluation of Solder Joints 373
17.6.1.6.1 Thermal Cycling and Thermal Shock 373
17.6.1.6.2 Thermal Cycling Dwell Time 374
17.6.1.6.3 Thermal Cycling Temperature 374
17.6.1.6.4 Power Cycling 375
17.6.1.7 Special Cases 376
17.6.2 Interconnection Failures Inside Packages 376
17.6.2.1 Failure Mechanisms 376
17.6.2.2 Accelerated Test Methods 377
17.6.3 Corrosion of Metallisation at Chip Surface 378
17.6.3.1 Failure Mechanisms 378
17.6.3.2 Accelerated Test Methods 379
17.7 Test Vehicles 379
17.8 Categorisation of Package Types 380
17.8.1 Components with Leads 380
17.8.2 Packages with Rigid Structure and Solder Lands 380
17.8.3 Packages with Organic Structure and Solder Lands 380
17.8.4 Packages with Ceramic Interposer and Solder Balls 381
17.8.5 Packages with Organic Rigid Interposer and Solder Balls 381
17.8.6 Packages with Flexible Interposer and Solder Balls (Rigid Structure) 381
17.8.7 Packages with Compliant Layer 382
17.8.8 Moulded Chips with Solder Balls 382
17.8.9 Packages with Metallised Polymeric Bumps 382
17.8.10 Packages with Metallic Bumps 382

CHAPTER EIGHTEEN

CSP Requirements for Aerospace Applications

18.1 Spacecraft on Chip 387
18.2 Quality Assurance: A System Approach 389
18.3 Electronics Miniaturisation Trends 391
18.4 Microelectronics Assembly Reliability 393
18.5 Microelectronics Field Reliability Projection Challenges 394
18.6 SMA ledged/leadless Reliability 395
18.6.1 SMA Key Variables: a Survey 395
18.6.2 SMA Reliability Evaluation 396
18.6.3 SMA Test Results 396
18.6.4 SMA Cycles-to-failure Analysis 398
18.7 BGA Reliability 399
18.7.1 BGA Test Vehicle Configuration 399
18.7.2 BGA - Thermal Cycling 400
18.7.3 BGA - Damage Monitoring 400
18.7.4 BGA Thermal Cycling Results 402
18.8 CSP Challenges 402
18.8.1 CSP Definition 402
18.8.2 CSP Implementation Challenges 403
18.9 CSP Thermal Ageing Integrity 404
18.9.1 Ball/Package Shear Test 404
18.9.2 SEM Characterisation – As Received 405
18.9.3 Shear Test – As Received 406
18.9.4 SEM of Shear Surfaces – As Received 407
18.9.5 Shear after Thermal Ageing 407
18.9.6 Tin Leach of Aged Solder 407
18.9.7 CSP Outgassing Concerns 408
18.10 Assembly 408
18.10.1 Grid CSP Self-alignment 408
18.11 CSP Assembly Reliability – Literature Data 410
18.11.1 CTE Absorbed CSPs 410
18.11.2 Extreme CTE Mismatch CSPs 412
18.11.3 Ceramic CSPs 412
18.11.4 Comments on CSP Reliability Data 413
18.12 CSP Reliability – Review of Variables and Testing 413
18.12.1 Design 413
18.12.2 Package Variables 413
18.12.3 Solder Balls 414
18.12.4 Assembly 414
18.12.5 Test Methods 415
18.12.6 Failure Mechanisms and CSP Reliability 415
18.13 CSP Reliability Projection 417
18.13.1 Low I/O CSPs and SMA Comparison 417
18.13.2 Assembly Reliability of Different I/O CSP Comparison 418
18.14 CSP Technology Ranking Metrics 418
18.15 Thermal Cycling Test Standard 419
18.15.1 Thermal Cycling Test Standards 420
18.16 CSP Assembly and Test Results 421
18.16.1 Quality of Solder Joints 421
18.16.2 Grid CSP Shear Forces 422
18.17 CSP Thermal Cycling Test Results 422
18.18 Lessons Learned and Recommendations 426
18.18.1 Lessons Learned from SM and BGA for CSP 426
18.18.2 CSP Assembly Reliability Tests 428