Contents

Preface xi
1 Central Operation and Control of Power Systems 1
 1.1 General 1
 1.2 Control Center of a Power System 2
 1.3 Digital Computer Configuration 5
 1.4 Automatic Generation Control for a Power System 7
 1.4.1 Area Control Error 9
 1.4.1.1 CPS1, 1 Minute Average 12
 1.4.1.2 CPS2, 10 Minute Average 12
 1.4.1.3 Disturbance Conditions 14
 1.5 Operation without Central Computers or AGC 14
 1.6 Parallel Operation of Generators 19
 1.7 Network Power Flows 24
 1.7.1 Oversimplified Power Flow (dc Power Flow) 25
 1.8 Area Lumped Dynamic Model 30
Problems 34
References 38

2 Elements of Transmission Networks 39
 2.1 Phasor Notation 40
 2.2 Symmetrical Component Transformation 44
 2.2.1 Floating Voltage Base Per-Unit Systems 52
 2.3 Overhead Transmission Line Representation 56
 2.3.1 Inductance of Long Parallel Conductors 59
 2.3.2 Balanced Three-Phase Lines 65
 2.3.3 Unbalanced Lines 74
 2.3.4 Capacitance of Transmission Lines 76
 2.3.5 General Method to Determine Aerial Transmission Line Parameters 87
 2.4 Transformer Representation 97
 2.4.1 Wye-Delta and Phase-Shift Transformers 100
 2.4.2 Multiple-Winding Transformers 105
 2.5 Synchronous Machine Representation 108
 2.5.1 Steady-State Synchronous Machine Equivalent 114
 2.5.1.1 Short-Circuit Characteristics 120
 2.5.2 Transient Time-Frame Synchronous Machine Equivalent 120
 2.5.3 Subtransient Time-Frame Synchronous Machine Equivalent 122
Problems 131
References 139
6.6 Utilizing the Load-Flow Jacobian for Economic Dispatch ... 314
6.7 Economic Exchange of Power between Areas ... 320
 6.7.1 Economy A Program ... 322
Problems .. 326
References ... 333

7 State Estimation from Real-Time Measurements ... 335
7.1 The Line Power Flow State Estimator .. 336
7.2 State Estimation and Noisy Measurements .. 344
7.3 Monitoring the Power System .. 354
7.4 Determination of Variance Σ^2 to Normalize Measurements 357
Problems .. 364
References ... 367

Appendix A: Conductor Resistance and Rating ... 369

Index ... 377