Contents

Preface xiii
Acknowledgments xvii
Abbreviations and Acronyms xix

1 Introduction: What Is Biomedical Engineering?

1.1 Prelude 1
1.2 Engineering in modern medicine 4
1.3 What is biomedical engineering? 6
1.4 Biomedical engineering in the future 20
1.5 How to use this book 22
PROFILE OF THE AUTHOR: W. MARK SALTZMAN 24

PART 1. MOLECULAR AND CELLULAR PRINCIPLES

2 Biomolecular Principles 31

2.1 Prelude 31
2.2 Bonding between atoms and molecules 33
2.3 Water: The medium of life 36
2.4 Biochemical energetics 38
2.5 Importance of pH 44
2.6 Macromolecules: Polymers of biological importance 49
2.7 Lipids 62

3 Biomolecular Principles: Nucleic Acids 82

3.1 Prelude 82
3.2 Overview: Genetics and inheritance 86
3.3 Molecular basis of genetics 93
3.4 The central dogma: Transcription and translation 101
3.5 Control of gene expression 107
3.6 Recombinant DNA technology 110

4 Biomolecular Principles: Proteins 141

4.1 Prelude 141
4.2 Protein structure 143
Contents

4.3 Modification and processing of polypeptides 150
4.4 Enzymes 154

PROFILES IN BME: BRENDA K. MANN 161

5 Cellular Principles
5.1 Prelude 168
5.2 Cell structure and function 170
5.3 ECM 174
5.4 Molecules in the cell membrane 175
5.5 Cell proliferation 182
5.6 Cell differentiation and stem cells 186
5.7 Cell death 188
5.8 Cell culture technology 189

PROFILES IN BME: E.E. “JACK” RICHARDS II 194

PART 2. PHYSIOLOGICAL PRINCIPLES

6 Communication Systems in the Body 205
6.1 Prelude 205
6.2 Signaling fundamentals 210
6.3 The nervous system 214
6.4 The endocrine system 222
6.5 The adaptive immune system 227
6.6 Connections to biomedical engineering 234

PROFILES IN BME: DOUGLAS LAUFFENBURGER 237

7 Engineering Balances: Respiration and Digestion 247
7.1 Prelude 247
7.2 Introduction to mass balances 249
7.3 Respiratory physiology 260
7.4 Digestion and metabolism 276

8 Circulation 299
8.1 Prelude 299
8.2 The circulating fluid 300
8.3 The blood vessels 303
8.4 The heart 316

PROFILES IN BME: CURTIS G. NEASON 322

9 Removal of Molecules from the Body 329
9.1 Prelude 329
9.2 Examples of elimination of molecules from the body 331
9.3 Biotransformation and biliary excretion 334
9.4 Elimination of molecules by the kidneys 336
PART 3. BIOMEDICAL ENGINEERING

10 Biomechanics

10.1 Prelude 361
10.2 Mechanical properties of materials 362
10.3 Mechanical properties of tissues and organs 369
10.4 Cellular mechanics 378

11 Bioinstrumentation 389

11.1 Prelude 389
11.2 Overview of measurement systems 392
11.3 Types of sensors 395
11.4 Instruments in medical practice 402
11.5 Instruments in the research laboratory 416
11.6 Biosensors 420
11.7 Biomicroelectromechanical systems and lab-on-a-chip devices 421

PROFILES IN BME: BILL HAWKINS 425

12 Bioimaging 432

12.1 Prelude 432
12.2 X-rays and CT 436
12.3 Ultrasound imaging 443
12.4 Nuclear medicine 446
12.5 Optical bioimaging 451
12.6 MRI 456
12.7 Image processing and analysis 459

13 Biomolecular Engineering I: Biotechnology 472

13.1 Prelude 472
13.2 Drug delivery 474
13.3 Tissue engineering 482
13.4 Nanobiotechnology 492
13.5 Other areas of biomolecular engineering 495

PROFILES IN BME: ROBERT LANGER 497

14 Biomolecular Engineering II: Engineering of Immunity 507

14.1 Prelude 507
14.2 Antigens, Abs, and mAbs 509
14.3 What are Abs? 511
14.4 How can specific Abs be manufactured? 514
14.5 Clinical uses of Abs 516
14.6 Vaccines 519

PROFILES IN BME: ELIAH R. SHAMIR 532
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Biomaterials and Artificial Organs</td>
<td>537</td>
</tr>
<tr>
<td>15.1</td>
<td>Prelude</td>
<td>537</td>
</tr>
<tr>
<td>15.2</td>
<td>Biomaterials</td>
<td>538</td>
</tr>
<tr>
<td>15.3</td>
<td>Hemodialysis</td>
<td>544</td>
</tr>
<tr>
<td>15.4</td>
<td>Membrane oxygenators</td>
<td>553</td>
</tr>
<tr>
<td>15.5</td>
<td>Artificial heart</td>
<td>554</td>
</tr>
<tr>
<td>15.6</td>
<td>Biohybrid artificial organs</td>
<td>558</td>
</tr>
<tr>
<td>16</td>
<td>Biomedical Engineering and Cancer</td>
<td>572</td>
</tr>
<tr>
<td>16.1</td>
<td>Prelude</td>
<td>572</td>
</tr>
<tr>
<td>16.2</td>
<td>Introduction to cancer</td>
<td>573</td>
</tr>
<tr>
<td>16.3</td>
<td>Surgery</td>
<td>574</td>
</tr>
<tr>
<td>16.4</td>
<td>Radiation therapy</td>
<td>576</td>
</tr>
<tr>
<td>16.5</td>
<td>Chemotherapy</td>
<td>584</td>
</tr>
<tr>
<td>16.6</td>
<td>Hormonal and biological therapies</td>
<td>589</td>
</tr>
<tr>
<td>16.7</td>
<td>Systems biology, biomedical engineering, and cancer</td>
<td>593</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Physiological Parameters</td>
<td>605</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Chemical Parameters</td>
<td>611</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Units and Conversion Factors</td>
<td>614</td>
</tr>
<tr>
<td></td>
<td>Index</td>
<td>617</td>
</tr>
</tbody>
</table>

Color plates follow page 298