Translational Multimodality
Optical Imaging

Fred S. Azar
Xavier Intes
Editors
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>xv</td>
</tr>
<tr>
<td>Preface</td>
<td>xvii</td>
</tr>
<tr>
<td>CHAPTER 1</td>
<td></td>
</tr>
<tr>
<td>Introduction to Clinical Optical Imaging</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Tissue Optics</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1 Scattering</td>
<td>2</td>
</tr>
<tr>
<td>1.2.2 Raman Scattering</td>
<td>3</td>
</tr>
<tr>
<td>1.2.3 Absorption</td>
<td>3</td>
</tr>
<tr>
<td>1.2.4 Fluorescence</td>
<td>4</td>
</tr>
<tr>
<td>1.3 Light Propagation</td>
<td>6</td>
</tr>
<tr>
<td>1.3.1 Fundamentals</td>
<td>6</td>
</tr>
<tr>
<td>1.3.2 Forward Model</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Multimodality Imaging</td>
<td>9</td>
</tr>
<tr>
<td>1.4.1 A Brief History of Clinical Multimodality Imaging</td>
<td>9</td>
</tr>
<tr>
<td>1.4.2 Multimodality Optical Imaging</td>
<td>10</td>
</tr>
<tr>
<td>1.5 Conclusions</td>
<td>13</td>
</tr>
<tr>
<td>References</td>
<td>13</td>
</tr>
<tr>
<td>CHAPTER 2</td>
<td></td>
</tr>
<tr>
<td>In Vivo Microscopy</td>
<td>19</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>19</td>
</tr>
<tr>
<td>2.2 Confocal Microscopy</td>
<td>20</td>
</tr>
<tr>
<td>2.3 Endoscope-Compatible Systems</td>
<td>20</td>
</tr>
<tr>
<td>2.4 MKT Cellvizio-GI</td>
<td>23</td>
</tr>
<tr>
<td>2.5 Dual-Axes Confocal Microscope</td>
<td>25</td>
</tr>
<tr>
<td>2.6 Molecular Imaging</td>
<td>27</td>
</tr>
<tr>
<td>References</td>
<td>30</td>
</tr>
<tr>
<td>CHAPTER 3</td>
<td></td>
</tr>
<tr>
<td>Endoscopy</td>
<td>33</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>33</td>
</tr>
<tr>
<td>3.2 Point-Probe Spectroscopy Techniques</td>
<td>33</td>
</tr>
<tr>
<td>3.2.1 Scattering Spectroscopy</td>
<td>34</td>
</tr>
<tr>
<td>3.2.2 Fluorescence Spectroscopy</td>
<td>36</td>
</tr>
<tr>
<td>3.2.3 Raman Spectroscopy</td>
<td>38</td>
</tr>
</tbody>
</table>
3.2.4 Multimodality Spectroscopy 38
3.3 Wide-Field Imaging 39
 3.3.1 Fluorescence Imaging 39
 3.3.2 Molecular Imaging 41
 3.3.3 Chromoendoscopy 42
 3.3.4 Narrowband Imaging 43
 3.3.5 Multimodality Wide-Field Imaging 43
3.4 Cross-Sectional Imaging 44
 3.4.1 Endoscopic Optical Coherence Tomography 44
 3.4.2 Ultrahigh-Resolution OCT (UHROCT) 45
 3.4.3 Three-Dimensional OCT 46
 3.4.4 Multimodality Imaging with OCT 47
3.5 Summary 51
Acknowledgments 51
References 51

CHAPTER 4
Diffuse Optical Techniques: Instrumentation 59
4.1 Introduction: Deterministic “Diffuse” Detection of Probabilistic Photon Propagation 59
4.2 Methods of Differentiating the Origin of Diffuse Photons 60
 4.2.1 The Source-Encoding Requirement in DOT 61
 4.2.2 Methods of Source Encoding and Detector Decoding for Diffuse Optical Tomography 62
4.3 Techniques of Decoupling the Absorption and Scattering Contributions to the Photon Remission 65
 4.3.1 Time-Domain Detection 66
 4.3.2 Frequency-Domain Detection 68
 4.3.3 Continuous-Wave Detection 70
4.4 Principles of Determining the Heterogeneity of Optical Properties 70
 4.4.1 Tomographic Image Reconstruction and Prior Utilization 70
 4.4.2 Diffuse Optical Tomography Imaging in the Context of Multimodality Imaging 73
4.5 Novel Approaches in Instrumentation of Diffuse Optical Tomography: Source Spectral Encoding 76
 4.5.1 Discrete Spectral Encoding by Use of Multiple Laser Diodes 76
 4.5.2 Imaging Examples of Spectral-Encoding Rapid NIR Tomography 78
 4.5.3 Spread Spectral Encoding by Use of Single Wideband Light Source 80
 4.5.4 Light Sources for Spread Spectral Encoding 81
 4.5.5 Characteristics of Spread Spectral Encoding 82
 4.5.6 Hemodynamic Imaging by Spread-Spectral-Encoding NIR Tomography 84
4.6 Novel Approaches in Instrumentation of Diffuse Optical Tomography: Transrectal Applicator 85
 4.6.1 Transrectal Applicator for Transverse DOT Imaging 86
 4.6.2 Transrectal Applicator for Sagittal DOT Imaging 88
4.7 Potential Directions of Instrumentation for Diffuse Optical Measurements
4.8 Conclusions
Acknowledgments
References

CHAPTER 5
Multimodal Diffuse Optical Tomography: Theory
5.1 Introduction
5.2 Diffuse Optical Tomography
 5.2.1 The Forward Problem and Linearization
 5.2.2 Inverse Problem
5.3 Multimodality Reconstruction: Review of Previous Work
5.4 Multimodality Priors and Regularization
 5.4.1 Structural Priors
 5.4.2 Regularization Using Mutual Information
5.5 Conclusions
Acknowledgments
References

CHAPTER 6
Diffuse Optical Spectroscopy with Magnetic Resonance Imaging
6.1 Introduction
6.2 Anatomical Imaging
6.3 Combining Hemodynamic Measures of MRI and Optical Imaging
6.4 MRI-Guided Optical Imaging Reconstruction Techniques
6.5 Other MR-Derived Contrast and Optical Imaging
6.6 Hardware Challenges to Merging Optical and MRI
6.7 Optical/MR Contrast Agents
6.8 Outlook for MR-Optical Imaging
References

CHAPTER 7
Software Platforms for Integration of Diffuse Optical Imaging and Other Modalities
7.1 Introduction
 7.1.1 A Platform for Diffuse Optical Tomography
 7.1.2 A Platform for Diffuse Optical Spectroscopy
7.2 Imaging Platform Technologies
 7.2.1 Multimodal Imaging Workflow for DOT Applications
 7.2.2 3D-DOT/3D-MRI Image-Registration Algorithm
 7.2.3 Breast MRI Image Segmentation
 7.2.4 Image-Based Guidance Workflow and System for DOS Applications
7.3 Computing the Accuracy of a Guidance and Tracking System
 7.3.1 Global Accuracy of the System
 7.3.2 Motion Tracking
CHAPTER 8
Diffuse Optical Spectroscopy in Breast Cancer: Coregistration with MRI and Predicting Response to Neoadjuvant Chemotherapy

8.1 Introduction
8.2 Coregistration with MRI
 8.2.1 Materials and Methods
 8.2.2 Results
 8.2.3 Discussion
8.3 Monitoring and Predicting Response to Breast Cancer Neoadjuvant Chemotherapy
 8.3.1 Materials and Methods
 8.3.2 Results
 8.3.3 Discussion
8.4 Summary and Conclusions
Acknowledgments
References

CHAPTER 9
Optical Imaging and X-Ray Imaging

9.1 Introduction
 9.1.1 Current Clinical Approach to Breast Cancer Screening and Diagnosis
 9.1.2 The Importance of Fusing Function and Structural Information
 9.1.3 Recent Advances in DOT for Imaging Breast Cancer
9.2 Instrumentation and Methods
 9.2.1 Tomographic Optical Breast-Imaging System and Tomosynthesis
 9.2.2 3D Forward Modeling and Nonlinear Image Reconstruction
 9.2.3 Simultaneous Image Reconstruction with Calibration Coefficient Estimation
 9.2.4 Utilizing Spectral Prior and Best Linear Unbiased Estimator
 9.2.5 Utilizing Spatial Prior from Tomosynthesis Image
9.3 Clinical Trial of TOBI/DBT Imaging System
 9.3.1 Image Reconstruction of Healthy Breasts
 9.3.2 Imaging Breasts with Tumors or Benign Lesions
 9.3.3 Region-of-Interest Analysis
9.4 Dynamic Imaging of Breast Under Mechanical Compression
 9.4.1 Experiment Setup
 9.4.2 Tissue Dynamic from Healthy Subjects
9.4.3 Contact Pressure Map Under Compression

9.5 Conclusions
References

CHAPTER 10
Diffuse Optical Imaging and PET Imaging

10.1 Introduction

10.2 Positron Emission Tomography (PET)
10.2.1 PET Fundamentals
10.2.2 PET Image Reconstruction
10.2.3 PET Instrumentation

10.3 Diffuse Optical Imaging (DOI)
10.3.1 DOI Instrumentation
10.3.2 DOI Image Reconstruction

10.4 Fluorescence Diffuse Optical Imaging (FDOI)

10.5 Clinical Observations
10.5.1 Whole-Body PET and DOI
10.5.2 Breast-Only PET and DOI
10.5.3 ICG Fluorescence

10.6 Summary
Acknowledgments
References

CHAPTER 11
Photodynamic Therapy

11.1 Introduction

11.2 Basics of PDT

11.3 Superficial Applications

11.4 PDT in Body Cavities

11.5 PDT for Solid Tumors

11.6 Delivery and Monitoring of PDT

11.7 The Future of PDT and Imaging
Acknowledgments
References

CHAPTER 12
Optical Phantoms for Multimodality Imaging

12.1 Introduction

12.2 Absorption and Scatter Phantom Composition

12.3 Typical Tissue Phantoms for Multimodal and Optical Imaging
12.3.1 Hydrogel-Based Phantoms
12.3.2 Polyester Resin and RTV Silicone Phantoms
12.3.3 Aqueous Suspension Phantoms

12.4 Conclusions
Acknowledgments
References
CHAPTER 13
Intraoperative Near-Infrared Fluorescent Imaging Exogenous Fluorescence Contrast Agents

13.1 Introduction
13.2 Unmet Medical Needs Addressed by Intraoperative NIR Fluorescence Imaging
 13.2.1 Improving Long-Term Efficacy of Primary Treatment
 13.2.2 Reducing the Rate of Complications
13.3 Imaging Considerations
 13.3.1 Contrast Media
 13.3.2 Tissue Penetration Depth
 13.3.3 Autofluorescence
 13.3.4 Optical Design Considerations
 13.3.5 Excitation
 13.3.6 Collection Optics and Emission Filtering
 13.3.7 Detectors
13.4 Future Outlook
References

CHAPTER 14
Clinical Studies in Optical Imaging: An Industry Perspective

14.1 Introduction
14.2 Breast Cancer
14.3 Optical Breast-Imaging Technology
14.4 Development Process
 14.4.1 Product Definition
 14.4.2 Clinical Indication
 14.4.3 Target Markets
 14.4.4 Regulatory Risk Classification
 14.4.5 General Device Description
 14.4.6 Design Control
14.5 Clinical Trials and Results
 14.5.1 Clinical Plan
 14.5.2 Pilot Studies
 14.5.3 Tissue-Characterization Trials
14.6 Conclusions
Acknowledgments
References

CHAPTER 15
Regulation and Regulatory Science for Optical Imaging

15.1 Introduction
15.2 Fundamental Concepts in Medical Device Regulation
 15.2.1 Premarket and Postmarket
 15.2.2 Safety
 15.2.3 Effectiveness
 15.2.4 Risk Evaluation
<table>
<thead>
<tr>
<th>17.3</th>
<th>Fluorescence Molecular Tomography</th>
<th>347</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3.1</td>
<td>Hardware Development</td>
<td>347</td>
</tr>
<tr>
<td>17.3.2</td>
<td>Image Reconstruction</td>
<td>349</td>
</tr>
<tr>
<td>17.3.3</td>
<td>Intrinsic Resolution Limits</td>
<td>350</td>
</tr>
<tr>
<td>17.4</td>
<td>FMT-Derived Imaging Modalities</td>
<td>351</td>
</tr>
<tr>
<td>17.4.1</td>
<td>Noncontact FMT</td>
<td>351</td>
</tr>
<tr>
<td>17.4.2</td>
<td>Fluorescent Protein Tomography</td>
<td>351</td>
</tr>
<tr>
<td>17.4.3</td>
<td>Mesoscopic Fluorescence Tomography</td>
<td>353</td>
</tr>
<tr>
<td>17.4.4</td>
<td>Further Developments</td>
<td>354</td>
</tr>
<tr>
<td>17.5</td>
<td>Photoacoustic Tomography</td>
<td>355</td>
</tr>
<tr>
<td>17.5.1</td>
<td>Photoacoustic Theory</td>
<td>356</td>
</tr>
<tr>
<td>17.5.2</td>
<td>Combined FMT-PAT Imaging</td>
<td>357</td>
</tr>
<tr>
<td>17.6</td>
<td>Summary</td>
<td>357</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>359</td>
</tr>
</tbody>
</table>

CHAPTER 18

From Benchtop to Boardroom: Staying Market Focused

18.1	Identify the Market	363
18.2	Technology Alone Has Little Value	364
18.3	Find a Business Mentor	365
18.4	Tell a Story Using the Right Terms	365
18.5	Focus Is the Key	366
18.6	Build Value	367
18.7	Conclusions	367
	References	368

About the Editors 369

List of Contributors 371

Index 375