Radar System Analysis, Design, and Simulation

Eyung W. Kang
Contents

Preface xi
Acknowledgments xiii
Introduction xv

CHAPTER 1
Matrix, Vector, and Linear Equations 1
1.1 Introduction 1
1.2 Simultaneous Linear Equation 1
 1.2.1 Gaussian Elimination with Backsubstitution 2
 1.2.2 Gaussian Elimination with Forward Substitution 4
1.3 Matrix Factorization 5
 1.3.1 LU Factorization 5
 1.3.2 LL† Factorization (Cholesky) 7
 1.3.3 LDL† Factorization (Modified Cholesky) 8
 1.3.4 UDU† Factorization 10
 1.3.5 QR Factorization 11
1.4 Matrix Inversion 15
 1.4.1 L−1 16
 1.4.2 L−1 x 17
 1.4.3 U−1 19
 1.4.4 U−1 x 20
 1.4.5 D−1 21
 1.4.6 Q−1 21
1.5 Vector Operations 21
1.6 Matrix Operations 22
1.7 Conclusion 23
 Selected Bibliography 24

CHAPTER 2
Pseudorandom Number, Noise, and Clutter Generation 25
2.1 Introduction 25
2.2 Pseudorandom Numbers and Unit Uniform Variables 25
 2.2.1 PRN Generation of an Arbitrary Population 27
2.3 White Gaussian Noise 28
2.4 Rayleigh Noise 30
2.5 Rician Random Variables, Signal-to-Noise Ratio 31
2.6 Chi-Squared Noise 35
2.7 Square-Law Detector
2.8 Exponential Noise
2.9 Lognormal Clutter
2.10 Weibull Clutter
2.11 Postulate of Probability Density Function from Sampled Data
2.12 Construction of Gaussian (Normal) Probability Paper
2.13 Conclusion
References

CHAPTER 3
Filters, FIR, and IIR
3.1 Introduction
3.2 Finite Impulse Response Filter (FIR)
3.2.1 FIR Filters: Lowpass, Highpass, Bandpass, and Bandstop
3.2.2 Window Functions: Rectangle, von Hann, Hamming, and Blackman
3.2.3 Kaiser Filter: Lowpass, Highpass, Bandpass, and Bandstop
3.3 Infinite Impulse Response Filter (IIR)
3.3.1 Bilinear Transform
3.3.2 Review of Analog Filters
3.3.3 IIR Filter, Butterworth Lowpass
3.3.4 IIR Filter, Chebyshev Lowpass
3.3.5 IIR Filter, Elliptic Lowpass
3.3.6 IIR Filter, Elliptic Bandpass
3.3.7 Issue of Nonlinearity
3.3.8 Comparison Between FIR and IIR Filters
3.3.9 Quantized Noise and Dynamic Range of A/D Converter
References

CHAPTER 4
Fast Fourier Transform (FFT) and IFFT
4.1 Introduction
4.2 Fast Fourier Transform Decimation-in-Time and Decimation-in-Frequency
4.3 Demonstration of FFT_DIT and FFT_DIF
4.4 Spectral Leakage and Window Function
4.5 Inverse Fast Fourier Transform Decimation-in-Time, and Decimation-in-Frequency
4.6 Applications of FFT and IFFT
4.6.1 Filtering in the Frequency Domain
4.6.2 Detection of Signal Buried in Noise
4.6.3 Interpolation of Data
4.6.4 Pulse Compression
4.6.5 Amplitude Unbalance and Phase Mismatch
Appendix 4A
References
CHAPTER 9
Monte Carlo Method and Function Integration

9.1 Introduction
9.2 Hit-or-Miss Method
9.3 Ordered Sample Method
9.4 Sample Mean Method
9.5 Importance Sampling Method
9.6 Observations and Remarks
9.7 Probability of False Alarm, Exponential Probability Density Function
9.8 Probability of False Alarm, Gaussian Density Function
9.9 Integration of Functions
 9.9.1 Trapezoidal Rule
 9.9.2 Simpson's Rule and Extended Simpson's Rule
 9.9.3 Gaussian Quadrature
9.10 Quadrature in Two Dimensions
9.11 Quadrature in Three Dimensions
9.12 Concluding Remarks
 References
Appendix 9A

CHAPTER 10
Constant False Alarm Rate (CFAR) Processing

10.1 Introduction
10.2 Cell Average CFAR (CA-CFAR)
10.3 Order-Statistics CFAR (OS-CFAR)
10.4 Weibull Clutter
 10.4.1 Weibull Probability Density Function
 10.4.2 Weibull Clutter After a Square-Law Detector
10.5 Weber-Haykin CFAR (WH-CFAR)
10.6 Maximum Likelihood CFAR (ML-CFAR)
10.7 Minimum Mean Square Error CFAR (MMSE-CFAR)
10.8 Conclusion
 References
Selected Bibliography
CHAPTER 11
Moving Target Indicator 323
11.1 Introduction 323
11.2 Nonrecursive Delay-Line Canceller 323
11.3 Recursive Delay-Line Canceller 327
11.4 Blind Speed and Staggered PRFs 331
11.5 Clutter Attenuation and Improvement Factor 334
11.6 Limitation Due to System Instability 346
11.7 A/D Converter Quantization Noise 348
11.8 Clutter Map 349
11.9 Conclusion 349
References 350

CHAPTER 12
Miscellaneous Program Routines 351

Index 355