Condition Monitoring of Rotating Electrical Machines

Peter Tavner, Li Ran, Jim Penman and Howard Sedding

The Institution of Engineering and Technology
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xiii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xvii</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>xix</td>
</tr>
<tr>
<td>1 Introduction to condition monitoring</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 The need for monitoring</td>
<td>4</td>
</tr>
<tr>
<td>1.3 What and when to monitor</td>
<td>7</td>
</tr>
<tr>
<td>1.4 Scope of the text</td>
<td>9</td>
</tr>
<tr>
<td>1.5 References</td>
<td>10</td>
</tr>
<tr>
<td>2 Construction, operation and failure modes of electrical machines</td>
<td>13</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>13</td>
</tr>
<tr>
<td>2.2 Materials and temperature</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Construction of electrical machines</td>
<td>16</td>
</tr>
<tr>
<td>2.3.1 General</td>
<td>16</td>
</tr>
<tr>
<td>2.3.2 Stator core and frame</td>
<td>18</td>
</tr>
<tr>
<td>2.3.3 Rotors</td>
<td>18</td>
</tr>
<tr>
<td>2.3.4 Windings</td>
<td>18</td>
</tr>
<tr>
<td>2.3.5 Enclosures</td>
<td>20</td>
</tr>
<tr>
<td>2.3.6 Connections</td>
<td>26</td>
</tr>
<tr>
<td>2.3.7 Summary</td>
<td>26</td>
</tr>
<tr>
<td>2.4 Structure of electrical machines and their types</td>
<td>26</td>
</tr>
<tr>
<td>2.5 Machine specification and failure modes</td>
<td>33</td>
</tr>
<tr>
<td>2.6 Insulation ageing mechanisms</td>
<td>35</td>
</tr>
<tr>
<td>2.6.1 General</td>
<td>35</td>
</tr>
<tr>
<td>2.6.2 Thermal ageing</td>
<td>36</td>
</tr>
<tr>
<td>2.6.3 Electrical ageing</td>
<td>36</td>
</tr>
<tr>
<td>2.6.4 Mechanical ageing</td>
<td>37</td>
</tr>
<tr>
<td>2.6.5 Environmental ageing</td>
<td>38</td>
</tr>
<tr>
<td>2.6.6 Synergism between ageing stresses</td>
<td>39</td>
</tr>
<tr>
<td>2.7 Insulation failure modes</td>
<td>39</td>
</tr>
<tr>
<td>2.7.1 General</td>
<td>39</td>
</tr>
<tr>
<td>2.7.2 Stator winding insulation</td>
<td>40</td>
</tr>
<tr>
<td>2.7.3 Stator winding faults</td>
<td>45</td>
</tr>
</tbody>
</table>
List of contents

5.4 Correlation analysis 116
5.5 Signal processing for vibration 118
 5.5.1 General 118
 5.5.2 Cepstrum analysis 118
 5.5.3 Time averaging and trend analysis 120
5.6 Wavelet analysis 121
5.7 Conclusion 125
5.8 References 125

6 Temperature monitoring 127
 6.1 Introduction 127
 6.2 Local temperature measurement 127
 6.3 Hot-spot measurement and thermal images 132
 6.4 Bulk measurement 132
 6.5 Conclusion 134
 6.6 References 134

7 Chemical monitoring 137
 7.1 Introduction 137
 7.2 Insulation degradation 137
 7.3 Factors that affect detection 138
 7.4 Insulation degradation detection 142
 7.4.1 Particulate detection: core monitors 142
 7.4.2 Particulate detection: chemical analysis 146
 7.4.3 Gas analysis off-line 148
 7.4.4 Gas analysis on-line 149
 7.5 Lubrication oil and bearing degradation 152
 7.6 Oil degradation detection 153
 7.7 Wear debris detection 153
 7.7.1 General 153
 7.7.2 Ferromagnetic techniques 154
 7.7.3 Other wear debris detection techniques 155
 7.8 Conclusion 157
 7.9 References 157

8 Vibration monitoring 159
 8.1 Introduction 159
 8.2 Stator core response 159
 8.2.1 General 159
 8.2.2 Calculation of natural modes 161
 8.2.3 Stator electromagnetic force wave 164
 8.3 Stator end-winding response 167
 8.4 Rotor response 168
 8.4.1 Transverse response 168
 8.4.2 Torsional response 171
Condition monitoring of rotating electrical machines

8.5 Bearing response
8.5.1 General 173
8.5.2 Rolling element bearings 173
8.5.3 Sleeve bearings 175

8.6 Monitoring techniques 176
8.6.1 Overall level monitoring 177
8.6.2 Frequency spectrum monitoring 179
8.6.3 Faults detectable from the stator force wave 182
8.6.4 Torsional oscillation monitoring 183
8.6.5 Shock pulse monitoring 187

8.7 Conclusion 189
8.8 References 189

9 Electrical techniques: current, flux and power monitoring 193
9.1 Introduction 193
9.2 Generator and motor stator faults 193
9.2.1 Generator stator winding fault detection 193
9.2.2 Stator current monitoring for stator faults 193
9.2.3 Brushgear fault detection 194
9.2.4 Rotor-mounted search coils 194
9.3 Generator rotor faults 194
9.3.1 General 194
9.3.2 Earth leakage faults on-line 195
9.3.3 Turn-to-turn faults on-line 196
9.3.4 Turn-to-turn and earth leakage faults off-line 204
9.4 Motor rotor faults 207
9.4.1 General 207
9.4.2 Airgap search coils 207
9.4.3 Stator current monitoring for rotor faults 207
9.4.4 Rotor current monitoring 210
9.5 Generator and motor comprehensive methods 212
9.5.1 General 212
9.5.2 Shaft flux 213
9.5.3 Stator current 217
9.5.4 Power 217
9.5.5 Shaft voltage or current 219
9.5.6 Mechanical and electrical interaction 221
9.6 Effects of variable speed operation 221
9.7 Conclusion 224
9.8 References 224

10 Electrical techniques: discharge monitoring 229
10.1 Introduction 229
10.2 Background to discharge detection 229
10.3 Early discharge detection methods 231
10.3.1 RF coupling method 231
10.3.2 Earth loop transient method 233
10.3.3 Capacitive coupling method 235
10.3.4 Wideband RF method 236
10.3.5 Insulation remanent life 236
10.4 Detection problems 238
10.5 Modern discharge detection methods 239
10.6 Conclusion 241
10.7 References 241

11 Application of artificial intelligence techniques 245
11.1 Introduction 245
11.2 Expert systems 246
11.3 Fuzzy logic 250
11.4 Artificial neural networks 253
 11.4.1 General 253
 11.4.2 Supervised learning 254
 11.4.3 Unsupervised learning 256
11.5 Conclusion 260
11.6 References 261

12 Condition-based maintenance and asset management 263
12.1 Introduction 263
12.2 Condition-based maintenance 263
12.3 Life-cycle costing 265
12.4 Asset management 265
12.5 Conclusion 267
12.6 References 268

Appendix Failure modes and root causes in rotating electrical machines 269

Index 277